Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gamma-ray cloudbursts shed light on lightning

15.02.2008
High-energy gamma rays from thunderclouds may help us to predict when lightning will strike

A team including researchers at RIKEN’s Discovery Research Institute in Wako and the University of Tokyo has observed a burst of high-energy gamma radiation emerging from a thundercloud over the Sea of Japan (1). The discovery could help to reveal the complex electrical processes that cause lightning.

“Free electrons, originally produced by cosmic rays, can be accelerated by the strong electric fields in thunderclouds,” explains project scientist Harufumi Tsuchiya. “If they reach relativistic energies, they can knock other electrons out of their atoms, causing a ‘runaway electron avalanche’.”

When one of the high-energy electrons is deflected by the nucleus of an atom, it loses energy in the form of gamma rays called Bremsstrahlung—literally ‘braking radiation’. Bursts of these gamma rays have been detected by near-Earth satellites above thunderclouds, and very short bursts are often recorded near the ground. Longer bursts lasting up to a few minutes appear to be very rare events, and physicists are unsure where they come from or what they consist of.

To answer these questions, the researchers built new radiation detectors based on devices on board the Suzaku cosmic x-ray satellite. The detectors were installed on the roof of the Kashiwazaki–Kariwa nuclear power plant in Niigata. On 6 January 2007, during a violent winter thunderstorm, they recorded a large radiation spike lasting over a minute, which could not be attributed to background radiation or electrical noise.

The spectrum of radiation included high-energy gamma rays that could not have been produced by thermal processes—which would require temperatures of billions of degrees Celsius. Therefore the burst must have been caused by Bremsstrahlung processes.

The burst was recorded approximately 70 seconds before a large flash of lightning, leading the researchers to speculate on whether the two events are related. In theory the runaway electrons could produce a large number of slower electrons, leading to electrical imbalance and lightning. “If thunderclouds frequently generate gamma ray bursts prior to lightning discharges, detailed observations of such rays would allow us to predict when lightning will occur,” claims Tsuchiya.

However, more observations are needed to prove such a link. “We believe the burst behaves like a searchlight beam, illuminating only a limited area on the ground,” says Tsuchiya, “so we were probably fortunate that the beam happened to pass over our detector.” To test this hypothesis, the researchers plan to spread several detectors over a large area, so that they might trace the movement of a gamma ray burst.

1. Tsuchiya, H., Enoto, T., Yamada, T., Yuasa, T., Kawaharada, M., Kitaguchi, T., Kokubun, M., Kato, H., Okano, M., Nakamura, S. & Makishima, K. Detection of high-energy gamma rays from winter thunderclouds. Physical Review Letters 99, 165002 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.researchsea.com
http://www.rikenresearch.riken.jp/research/380/image_1349.html

More articles from Physics and Astronomy:

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

nachricht Physicists edge closer to controlling chemical reactions
11.12.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>