Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantifying exchange interactions on the atomic scale

09.03.2020

Research team from Kiel and Nijmegen studies magnetic spiral structure

Today, there is a great effort to scale down magnetic memory towards nanometer-sized bits in order to ultimately store information in a single magnetic atom. This makes it necessary to image magnetic properties on the atomic scale.


Simulation of the exchange interaction between the pyramidal magnetic tip

Copyright: Soumyajyoti Haldar


Sketch of the measurement scheme and combined force- and current-based detection of the magnetic spiral structure

Copyright: Nadine Hauptmann

At the heart of magnetism is the exchange interaction – proposed by Werner Heisenberg in 1926 based on quantum mechanics – which aligns the “bar magnets” of single atoms. Utilizing a novel type of microscope allowing to measure forces and currents on magnetic surfaces and first-principles quantum mechanical calculations, scientists from Nijmegen and Kiel have now reported on ultra-high magnetic resolution of a magnetic spiral structure and quantification of exchange interactions at the atomic scale.

Their joint work is published in the renowned journal Nature Communications.

In the 1980’s Gerd Binnig and Heinrich Rohrer developed at the IBM research center in Rüschlikon in Zurich the scanning tunneling microscope for which they were later awarded the Nobel prize. In this instrument a sharp metallic tip is brought to a distance of about half a nanometer above a surface. At this tiny separation a small tunnel current flows between tip and surface.

By scanning the tip across the surface this allows to resolve the atomic structure of surfaces. If a magnetic metallic tip is used even magnetic properties become accessible. However, the current is sensitive to numerous other signals which strongly convolute the magnetic information.

On the other hand, there is also a force acting between the atoms of the tip and those of the surface. If both tip and surface are magnetic, this force includes the Heisenberg exchange interaction. Recently, researchers around Professor Alexander Khajetoorians and Dr. Nadine Hauptmann from the Dutch Radboud University in Nijmegen developed a novel microscope which allows to measure the magnetic contributions to the current and force simultaneously.

In their present work, the researchers from the Radboud University and Kiel University, Germany, present unprecedent high-resolution imaging and quantify the exchange force field between a ferromagnetic tip and a chiral magnetic spiral structure. “With our new technique we could show that the force measurements are more sensitive to atomic-scale variations of the exchange force field and the local chemical environment than the current,” says Dr. Nadine Hauptmann.

First-principles quantum mechanical calculations performed on the super computers of the Northern German Supercomputing Alliance (HLRN) explain the experimental observations. “Our calculations show that the last atom at the tip plays a crucial role for the obtained exchange forces and reveal a competition of different exchange mechanisms,” as Dr. Soumyajyoti Haldar from Kiel University points out.

Their work creates a new state of the art in high-resolution imaging of complex magnetic structures, and demonstrates that exchange interactions can be quantified on the atomic scale. In the future the approach will allow to study single magnetic atoms or magnetic molecules.

The Kiel part of the work was done within the Collaborative Research Center CRC 677 "Function by Switching" of Kiel University.

Original publication:
N. Hauptmann, S. Haldar, T.-C. Hung, W. Jolie, M. Gutzeit, D. Wegner, S. Heinze, and A. A. Khajetoorians, Quantifying exchange forces of a spin spiral on the atomic scale, Nature Communications, 05.03.2020 (2020).
DOI: 10.1038/s41467-020-15024-2 https://www.nature.com/articles/s41467-020-15024-2

Images are available to download:
https://www.uni-kiel.de/de/pressemitteilungen/2020/070-Spiralstruktur-1.png
Caption: Upper panel: Sketch of the measurement scheme. Using an atomically sharp and magnetic tip (triangle with green arrow), the exchange force and tunnel current between the ferromagnetic tip and the cycloidal magnetic spiral in a single-atom manganese film is detected. The blue and green arrows indicate the direction of the magnetic moments of the atoms (atomic “bar magnets”) at the surface. Lower panel: Combined force- and current-based detection of the magnetic spiral structure. In the force map (blue-yellow color code) the surface atoms appear at different contrast levels due to the magnetic structure. The scale bar in the lower right corner shows the length scale (0.5 nm = 0.5 nanometers).
Copyright: Nadine Hauptmann

https://www.uni-kiel.de/de/pressemitteilungen/2020/070-Spiralstruktur-2.png
Caption: Simulation of the exchange interaction between the pyramidal magnetic tip, which consists of iron (Fe) atoms and terminates with a manganese (Mn) apex atom, and the surface. The surface consists of an atomic layer of manganese (Mn) atoms with “atomic bar magnets” pointing upwards (↑) or downwards (↓). The manganese layer rests on the surface of a tungsten crystal (W(110)). Red and blue isosurfaces show the interaction between electron densities of tip and surface atoms.
Copyright: Soumyajyoti Haldar

Further Information:
Dr. Nadine Hauptmann
Radboud University
Nijmegen
Phone: +31 2436 53183
E-Mail: n.hauptmann@science.ru.nl
Web: https://www.ru.nl/spm/

Prof. Dr. Stefan Heinze
Institute of Theoretical Physics and Astrophysics
University of Kiel
Phone: +49 431 / 880-4127
E-Mail: heinze@theo-physik.uni-kiel.de
Web:https://www.itap.uni-kiel.de/theo-physik/heinze

More information:
Details, which are only a millionth of a millimetre in size: this is what the priority research area "Kiel Nano, Surface and Interface Science – KiNSIS" at Kiel University has been working on. In the nano-cosmos, different laws prevail than in the macroscopic world - those of quantum physics. Through intensive, interdisciplinary cooperation between physics, chemistry, engineering and life sciences, the priority research area aims to understand the systems in this dimension and to implement the findings in an application-oriented manner. Molecular machines, innovative sensors, bionic materials, quantum computers, advanced therapies and much more could be the result. More information at https://www.kinsis.uni-kiel.de/en

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni Instagram: www.instagram.com/kieluni

Wissenschaftliche Ansprechpartner:

Dr. Nadine Hauptmann
Radboud University
Nijmegen
Phone: +31 2436 53183
E-Mail: n.hauptmann@science.ru.nl
Web: https://www.ru.nl/spm/

Prof. Dr. Stefan Heinze
Institute of Theoretical Physics and Astrophysics
University of Kiel
Phone: +49 431 / 880-4127
E-Mail: heinze@theo-physik.uni-kiel.de
Web:https://www.itap.uni-kiel.de/theo-physik/heinze

Originalpublikation:

N. Hauptmann, S. Haldar, T.-C. Hung, W. Jolie, M. Gutzeit, D. Wegner, S. Heinze, and A. A. Khajetoorians, Quantifying exchange forces of a spin spiral on the atomic scale, Nature Communications, 05.03.2020 (2020).
DOI: 10.1038/s41467-020-15024-2 https://www.nature.com/articles/s41467-020-15024-2

Weitere Informationen:

https://www.uni-kiel.de/en/details/news/070-spiralstruktur

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Physics and Astronomy:

nachricht Cherned up to the maximum
10.07.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>