Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsars: The Universe's gift to physics

21.02.2012
Unique cosmic 'laboratories' yielding otherwise-unavailable insights

Pulsars, superdense neutron stars, are perhaps the most extraordinary physics laboratories in the Universe. Research on these extreme and exotic objects already has produced two Nobel Prizes. Pulsar researchers now are poised to learn otherwise-unavailable details of nuclear physics, to test General Relativity in conditions of extremely strong gravity, and to directly detect gravitational waves with a "telescope" nearly the size of our Galaxy.

Neutron stars are the remnants of massive stars that exploded as supernovae. They pack more than the mass of the Sun into a sphere no larger than a medium-sized city, making them the densest objects in the Universe, except for black holes, for which the concept of density is theoretically irrelevant. Pulsars are neutron stars that emit beams of radio waves outward from the poles of their magnetic fields. When their rotation spins a beam across the Earth, radio telescopes detect that as a "pulse" of radio waves.

By precisely measuring the timing of such pulses, astronomers can use pulsars for unique "experiments" at the frontiers of modern physics. Three scientists presented the results of such work, and the promise of future discoveries, at the American Association for the Advancement of Science meeting in Vancouver, British Columbia.

Pulsars are at the forefront of research on gravity. Albert Einstein published his theory of General Relativity in 1916, and his description of the nature of gravity has, so far, withstood numerous experimental tests. However, there are competing theories.

"Many of these alternate theories do just as good a job as General Relativity of predicting behavior within our Solar System. One area where they differ, though, is in the extremely dense environment of a neutron star," said Ingrid Stairs, of the University of British Columbia.

In some of the alternate theories, gravity's behavior should vary based on the internal structure of the neutron star.

"By carefully timing pulsar pulses, we can precisely measure the properties of the neutron stars. Several sets of observations have shown that pulsars' motions are not dependent on their structure, so General Relativity is safe so far," Stairs explained.

Recent research on pulsars in binary-star systems with other neutron stars, and, in one case, with another pulsar, offer the best tests yet of General Relativity in very strong gravity. The precision of such measurements is expected to get even better in the future, Stairs said.

Another prediction of General Relativity is that motions of masses in the Universe should cause disturbances of space-time in the form of gravitational waves. Such waves have yet to be directly detected, but study of pulsars in binary-star systems have given indirect evidence for their existence. That work won a Nobel Prize in 1993.

Now, astronomers are using pulsars throughout our Milky Way Galaxy as a giant scientific instrument to directly detect gravitational waves.

"Pulsars are such extremely precise timepieces that we can use them to detect gravitational waves in a frequency range to which no other experiment will be sensitive," said Benjamin Stappers, of the University of Manchester in the UK.

By carefully timing the pulses from pulsars widely scattered within our Galaxy, the astronomers hope to measure slight variations caused by the passage of the gravitational waves. The scientists hope such Pulsar Timing Arrays can detect gravitational waves caused by the motions of supermassive pairs of black holes in the early Universe, cosmic strings, and possibly from other exotic events in the first few seconds after the Big Bang.

"At the moment, we can only place limits on the existence of the very low-frequency waves we're seeking, but planned expansion and new telescopes will, we hope, result in a direct detection within the next decade," Stappers said.

With densities as much as several times greater than that in atomic nuclei, pulsars are unique laboratories for nuclear physics. Details of the physics of such dense objects are unknown.

"By measuring the masses of neutron stars, we can put constraints on their internal physics," said Scott Ransom of the National Radio Astronomy Observatory. "Just in the past three to four years, we've found several massive neutron stars that, because of their large masses, rule out some exotic proposals for what's going on at the centers of neutron stars," Ransom said.

The work is ongoing, and more measurements are needed. "Theorists are clever, so when we provide new data, they tweak their exotic models to fit what we've found," Ransom said.

Pulsars were discovered in 1967 and that discovery earned the Nobel Prize in 1974.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Dave Finley | EurekAlert!
Further information:
http://ww.nrao.edu

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>