Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists found weak spots in ceramic/graphene composites

30.09.2019

Physicists found out the structures in nanomaterials made of ceramic and graphene plates, in which cracks appear most frequently

Physicists and materials scientists from Peter the Great St.Petersburg Polytechnic University (SPbPU) found out the structures in nanomaterials made of ceramic and graphene plates, in which cracks appear most frequently.


Crack propagation over grain boundaries in the composite. Graphene plates are marked by green lines.

Credit: Peter the Great St.Petersburg Polytechnic University

The results of the first trial of the model, that describes the found regularity, were published in the Mechanics of Materials Journal. This model will help in creation of crack-resistant materials. The research was supported by the Russian Science Foundation grant.

Graphene is the lightest and strongest carbon modification. Moreover, it has a very high electrical conductivity. Because of these characteristics graphene is often included in the composition of new ceramic-based materials.

Ceramics are resistant to high temperatures, and, if carbon modifications are added, the composites become multifunctional. In the future they can be used in production of flexible electronic devices, sensors, in construction and aviation.

It is known from many experimental studies of such composites that their mechanic characteristics are set by the graphene proportion in the composition and by the size of graphene plates allocated in the ceramic matrix.

For example, in case of low graphene concentration high crack resistance was achieved with the help of long plates. However, in one of the recent experiments of synthesis of materials from alumina ceramics and graphene the opposite effect was shown: as the plates were bigger, the crack resistance was weaker. The researches from Saint Petersburg have developed a theoretical model that explains this paradox.

The SPbPU physicists of the of the Advanced Manufacturing Technologies Center of the National Technology Initiative (NTI) of Peter the Great St. Petersburg Polytechnic University supposed that the formation of cracks in the composites is connected with the boundaries of so-called ceramic grains - microscopic crystals that form the material. Graphene plates in the composites can be located both at the boundaries of ceramic grains and inside grains.

In the course of the tensile deformation of nanocrystalline materials, the grains slide relative to each other, and the cracks spread over their boundaries. But why do graphene additions stop this process in some cases and not stop it in others? To find the answer, the scientists developed a mathematical model that takes into account the tensile load, the force of friction, elastic moduli of the composite, and the correlation between the dimensions of ceramic grains and graphene plates.

With the help of the model the scientists computed the critical values of the stress intensity factor for three different composites. When these values were exceeded, cracks spread all over in the material. The composites varied in the size of ceramic grains (from 1.23 to 1.58 micrometers) and the length and width of graphene plates (from 193 to 1070 and from 109 to 545 nanometers).

It was found that the closer the length of graphene plates to the length of grain boundary lines, the lower the critical value of the stress intensity factor. The value difference for different materials comes up to 20%. It is congruent to experimental data published earlier: just at close values of grain boundary length and the length of graphene plates the crack resistance of the material dropped. This implies that to make the material stronger, graphene plates must be substantially smaller in length that ceramic grains.

"The found regularity is valid for fine-grained ceramics, and, after all, by reducing the grain size, the creators of new composite materials add more functionality to them," explains Alexander Sheinerman, Doctor of Physical and Mathematical Sciences, the head of research laboratory "The Mechanics of New Nanomaterials" of the Advanced Manufacturing Technologies Center of the National Technology Initiative NTI SPbPU. "Therewith, the effects of grain refinement can be contradictory, for example, the hardness rises, but the material becomes more fragile. Our model helps to pick the correlation of the graphene plate size and the size of grains, which provide better mechanic and functional characteristics.

Media Contact

Raisa Bestugina
mass-media@spbstu.ru
7-812-591-6675

 @pgpuspb

http://english.spbstu.ru/ 

Raisa Bestugina | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.mechmat.2019.103126

More articles from Physics and Astronomy:

nachricht Physicist from Hannover Develops New Photon Source for Tap-proof Communication
30.03.2020 | Leibniz Universität Hannover

nachricht Junior scientists at the University of Rostock invent a funnel for light
27.03.2020 | Universität Rostock

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Double-walled nanotubes have electro-optical advantages

30.03.2020 | Power and Electrical Engineering

Exeter researchers discover a novel chemistry to protect our crops from fungal disease

30.03.2020 | Agricultural and Forestry Science

Autophagy: Scientists discover novel role for self-recycling process in the brain

30.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>