Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Develop “Time Machine” for Materials Science

14.08.2019

Physics experiments are often time-consuming and expensive. Sometimes scientists do not realize until the very end that they have been using the wrong calibration for measurements the whole time. What if there were a way to go back in time to the start of the experiment and re-examine the data?

Researchers at Martin Luther University Halle-Wittenberg (MLU), Freie Universität Berlin, and the Technical University of Munich (TUM) hope to create a machine that would make that possible. They plan to develop their "time machine" for the large-scale research equipment at the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), which would mean a helpful improvement for the facility.


The German Federal Ministry of Education and Research has granted the project around two million euros, with MLU contributing 1.1 million euros.

"BESSY II" is unique among scientific equipment in Germany. Located at the Helmholtz-Zentrum Berlin, it produces X-rays whose energy and polarization properties can be precisely adjusted. At the core of "BESSY II" is a particle accelerator that can speed up electrons almost to the speed of light. The electrons circle around a magnetic storage ring, producing X-ray flashes in the process.

"You can imagine the Bessy storage ring as a camera with an incredibly fast flash. The X-rays are produced in pulses, which makes it possible to conduct experiments with a very high time resolution," says physicist Prof. Dr. Georg Woltersdorf from MLU. He heads the project together with Prof. Dr. Wolfgang Kuch from Freie Universität and Prof. Dr. Christian Back from TUM. The equipment’s special features have put it in high demand among materials researchers all over the world.

Over 2000 scientists conduct experiments with "BESSY II" annually, and there is a long waiting list. Another challenge to working with the equipment is that researchers must define in advance the precise parameters they want to measure and when. According to Woltersdorf, a small mistake in the experimental design could render void an entire sequence of measurements.

The current project focuses on this issue: High-speed data acquisition electronics should make it possible to record and analyze the signal from every X-ray flash that occurs during an experiment. Data are produced at a rate of several terabytes per hour. Woltersdorf says that the new construction will improve performance and productivity.

Thanks to the electronics, the data measurements can be immediately logged at the correct time. The raw data it stores allows scientists to jump to any point in time after the experiment is over and apply a different time grid, Woltersdorf explains. To make even better use of the electronics system, researchers are also experimenting with laser equipment used to stimulate samples through pulses. The process makes it possible to study the dynamics of matter on a picosecond time scale. A picosecond is equal to one trillionth of a second.

It is not the first time this team of researchers has come together to work at "BESSY II." In recent years, the three partners joined forces at the Helmholtz-Zentrum Berlin to set up the "VEKMAG" experiment at the synchrotron radiation source. The VEKMAG testing station enables unique measurements to be taken with high magnetic fields and low temperatures.

The only experimental research site of its kind worldwide, it is now expanding to include a laser for pulsing samples and equipment for high-performance data acquisition. Scientists will be able to use the equipment to study new magnetic materials that could be useful for data storage.

Tom Leonhardt | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-halle.de

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>