Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU Physicists Devise Method for Building Artificial Tissue

29.05.2012
New York University physicists have developed a method that models biological cell-to-cell adhesion that could also have industrial applications.

This system, created in the laboratory of Jasna Brujiæ, an assistant professor in NYU’s Department of Physics and part of its Center for Soft Matter Research, is an oil-in-water solution whose surface properties reproduce those found on biological cells.

Specifically, adhesion between compressed oil droplets mimics the mechanical properties of tissues and opens the path to numerous practical applications, ranging from biocompatible cosmetics to artificial tissue engineering.

Their method is described in the journal the Proceedings of the National Academy of Sciences.

Previously, Brujiæ’s laboratory has determined how spheres pack and devised methods for manipulating the packing process. In this PNAS study, Brujiæ and her research team sought to create a method that would address the role of packing in tissues from the point of view of how mechanical forces affect protein-protein adhesion between cells.

In biology, cell-to-cell adhesion is crucial to the integrity of tissue structure—cells must come together and stick in order to ensure tissue cohesion. However, the daunting complexity of biological systems has long prevented their description using general theoretical concepts taken from the physical sciences. For this reason, the research team designed an original biomimetic solution, or emulsion, that reproduces the main features of cell-to-cell adhesion in tissues.

Emulsions form the basis for a range of consumer products, including butter, ice cream, and milk. In addition, the emulsion in the PNAS study is tuned to match the attractive and repulsive interactions that govern adhesion between cells. The experimental conditions reveal the circumstances under which pushing forces are necessary to create adhesion.

By varying the amount of force by which the droplets of oil were compressed by centrifugation and the amount of salt added to this solution, the NYU team was able to isolate the optimal conditions for cell-to-cell adhesion. Screening electrostatic charges by the addition of salt and compressing the droplets by force enhances protein-protein interactions on the droplet surfaces. This leads to adhesion between contacting droplets covering all the interfaces, just as in the case of biological tissues.

Their results, which matched the researchers’ theoretical modeling of the process, offer a method for manipulating force and pressure in order to bind emulsions. This serves as a starting point for enriching a range of consumer products, by reconfiguring their molecular make-up to enhance consistency and function, and for improving pharmaceuticals, by bolstering the delivery of therapeutic molecules to the blood stream.

The study’s other authors were Lea-Laetitia Pontani, a postdoctoral research scientist, and Ivane Jorjadze, a graduate student, both from NYU’s Department of Physics and the Center for Soft Matter Research, as well as Virgile Viasnoff, an Associate Professor at the National University of Singapore and the French research institute, CNRS/ESPCI.

For more on the Brujiæ Laboratory, go to http://www.physics.nyu.edu/~jb2929/index.html; for more on the Center for Soft Matter Research, go to http://csmr.as.nyu.edu/page/home.

The research was performed in the NYU Materials Research Science and Engineering Center (MRSEC), which is supported by the National Science Foundation.

James Devitt | Newswise Science News
Further information:
http://www.nyu.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>