New Insights into the World of Quantum Materials

The Erbium Team (from left): Kiyotaka Aikawa, Albert Frisch, Simon Baier, Michael Mark, and Francesca Ferlaino (not pictured: Cornelis Ravensbergen) University of Innsbruck

How a system behaves is determined by its interaction properties. An important concept in condensed matter physics for describing the energy distribution of electrons in solids is the Fermi surface, named for Italian physicist Enrico Fermi. The existence of the Fermi surface is a direct consequence of the Pauli exclusion principle, which forbids two identical fermions from occupying the same quantum state simultaneously.

Energetically, the Fermi surface divides filled energy levels from the empty ones. For electrons and other fermionic particles with isotropic interactions – identical properties in all directions – the Fermi surface is spherical. “This is the normal case in nature and the basis for many physical phenomena,” says Francesca Ferlaino from the Institute for Experimental Physics at the University of Innsbruck.

“When the particle interaction is anisotropic – meaning directionally dependent – the physical behavior of a system is completely altered. Introducing anisotropic interactions can deform the Fermi surface and it is predicted to assume an ellipsoidal shape.” The deformation of the Fermi surface is caused by the interplay between strong magnetic interaction and the Pauli exclusion principle. Francesca Ferlaino and her experimental research group have now been able to show such a deformation for the first time.

Simulation in ultracold quantum gas

For their experiment, the quantum physicists confined a gas of fermionic erbium atoms in a laser trap and cooled it to almost absolute zero. The element erbium is strongly magnetic, which causes extreme dipolar behavior. The interaction between these atoms is, therefore, directionally dependent. When the physicists release the ultracold gas from the trap, they are able to infer the shape of the Fermi surface from the momentum distribution of the particles.

“Erbium atoms behave similarly to magnets, which means that their interaction is strongly dependent on the direction in which the particles interact. Our experiment shows that the shape of the Fermi surface depends on the geometry of the interaction and is not spherical anymore,” explains first author of the study Kiyotaka Aikawa the phenomenon that is extremely difficult to observe

Basic question

“The general question we deal with here is how the geometry of particle interactions influences the quantum properties of matter,” explains Francesca Ferlaino. Answering this question is of interest for physicists from different branches of physics such as the study of high-temperature superconductors. “We need a better understanding of these properties to develop new quantum systems,” underlines Francesca Ferlaino. Ultracold quantum gases once more provide an ideal platform for simulating complex scenarios.

This work was financially supported by the Austrian Ministry of Science, the Austrian Science Fund and the European Union. Since July 2014 ERC and START awardee Francesca Ferlaino is Scientific Director at the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences.

Publication: Observation of Fermi surface deformation in a dipolar quantum gas. K. Aikawa,
S. Baier, A. Frisch, M. Mark, C. Ravensbergen, F. Ferlaino. Science 2014
DOI: 10.1126/science.1255259 arXiv:1405.2154 http://arxiv.org/abs/1405.2154

Contact:
Univ.-Prof. Dr. Francesca Ferlaino
Institute for Experimental Physics
University of Innsbruck
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
6020 Innsbruck, Austria
Phone: +43 512 507-52440 (Lab.: -52441), (Secr.: -52449), (Fax: -2921)
Email: francesca.ferlaino@uibk.ac.at
Web: http://www.ultracold.at

Christian Flatz
Public Relations office
University of Innsbruck
Phone: +43 512 507 32022
Email: christian.flatz@uibk.ac.at
Web: http://www.uibk.ac.at

http://dx.doi.org/10.1126/science.1255259 – Observation of Fermi surface deformation in a dipolar quantum gas. K. Aikawa, S. Baier, A. Frisch, M. Mark, C. Ravensbergen, F. Ferlaino. Science 2014
http://www.ultracold.at – Ultracold Atoms and Quantum Gases

Media Contact

Dr. Christian Flatz Universität Innsbruck

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors