Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery helps close the gap towards optically controlled quantum computation

21.04.2020

Scientists at Ames Laboratory, Brookhaven National Laboratory, and the University of Alabama Birmingham have discovered a light-induced switching mechanism in a Dirac semimetal. The mechanism establishes a new way to control the topological material, driven by back-and-forth motion of atoms and electrons, which will enable topological transistor and quantum computation using light waves.

Just like today's transistors and photodiodes replaced vacuum tubes over half a century ago, scientists are searching for a similar leap forward in design principles and novel materials in order to achieve quantum computing capabilities.


Scientists who study topological materials face a challenge -- how to establish and maintain control of these unique quantum behaviors in a way that makes applications like quantum computing possible. In this experiment, Ames Laboratory Scientist Jigang Wang and his colleagues demonstrated that control by using light to steer quantum states in a Dirac semimetal.

Credit: US Department of Energy, Ames Laboratory

Current computation capacity faces tremendous challenges in terms of complexity, power consumption, and speed; to exceed the physical limits reached as electronics and chips become hotter and faster, bigger advances are needed. Particularly at small scales, such issues have become major obstacles to improving performance.

"Light wave topological engineering seeks to overcome all of these challenges by driving quantum periodic motion to guide electrons and atoms via new degrees of freedom, i.e., topology, and induce transitions without heating at unprecedented terahertz frequencies, defined as one trillion cycles per second, clock rates," said Jigang Wang, a senior scientist at Ames Laboratory and professor of physics at Iowa State University.

"This new coherent control principle is in stark contrast to any equilibrium tuning methods used so far, such as electric, magnetic and strain fields, which have much slower speeds and higher energy losses."

Wide-scale adoption of new computational principles, such as quantum computing, requires building devices in which fragile quantum states are protected from their noisy environments. One approach is through the development of topological quantum computation, in which qubits are based on "symmetry-protected" quasiparticles that are immune to noise.

However, scientists who study these topological materials face a challenge--how to establish and maintain control of these unique quantum behaviors in a way that makes applications like quantum computing possible. In this experiment, Wang and his colleagues demonstrated that control by using light to steer quantum states in a Dirac semimetal, an exotic material that exhibits extreme sensitivity due to its proximity to a broad range of topological phases.

"We achieved this by applying a new light-quantum-control principle known as mode-selective Raman phonon coherent oscillations--driving periodic motions of atoms about the equilibrium position using short light pulses," says Ilias Perakis, professor of physics and chair at the University of Alabama at Birmingham.

"These driven quantum fluctuations induce transitions between electronic states with different gaps and topological orders."

An analogy of this kind of dynamic switching is the periodically driven Kapitza's pendulum, which can transition to an inverted yet stable position when high-frequency vibration is applied. The researcher's work shows that this classical control principle - driving materials to a new stable condition not found normally - is surprisingly applicable to a broad range of topological phases and quantum phase transitions.

"Our work opens a new arena of light wave topological electronics and phase transitions controlled by quantum coherence," says Qiang Li, Group leader of the Brookhaven National Laboratory's Advanced Energy Materials Group. "This will be useful in the development of future quantum computing strategies and electronics with high speed and low energy consumption."

The spectroscopy and data analysis were performed at Ames Laboratory. Model building and analysis were partially performed at the University of Alabama, Birmingham. Sample development and magneto-transport measurements were performed at Brookhaven National Laboratory. Density functional calculations were supported by the Center for the Advancement of Topological Semimetals, a DOE Energy Frontier Research Center at Ames Laboratory.

###

The research is further discussed in the paper, "Light-Driven Raman Coherence as a Non-Thermal Route to Ultrafast Topology Switching in a Dirac Semimetal," authored by C. Vaswani, L.-L. Wang, D.H. Mudiyanselage, Q. Li, P. M. Lozano, G. Gu, D. Cheng, B. Song, L. Luo, R. H. J. Kim, C. Huang, Z. Liu, M. Mootz, I.E. Perakis, Y. Yao, K. M. Ho, and J. Wang; and published in Physical Review X.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Laura Millsaps | EurekAlert!
Further information:
https://www.ameslab.gov/news/new-discovery-helps-close-the-gap-towards-optically-controlled-quantum-computation

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>