Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analysis eliminates a potential speed bump in quantum computing

21.05.2014

Global symmetry not required for fast quantum search

A quantum particle can search for an item in an unsorted "database" by jumping from one item to another in superposition, and it does so faster than a classical computer ever could.


In a complete graph (left) every node is connected to every other. For other well studied graphs, the Paley graph in the center and the Latin square graph on the right, that is not true. A quantum particle could hop directly to the target position, in red, only from connected nodes, marked in blue.

Credit: Tom Wong, UC San Diego

This assertion assumes, however, that the particle can directly hop from any item to any other. Any restriction on which items the particle can directly hop to could slow down the search.

"Intuition says that a symmetric database allows the particle to hop freely enough to retain the quantum speedup, but our research has shown this intuition to be false," says Tom Wong, a physicist at the University of California, San Diego.

In a paper accepted for publication by Physical Review Letters, the researchers used a technique familiar to physicists called "degenerate perturbation theory" in a novel way to prove that global symmetry is not required for a sped up search.

Information scientists represent the database to be searched as a graph. In globally symmetric graphs, the nodes can be swapped with each other such that the connections between them are preserved. "Strongly regular graphs" don't share this property, but this analysis shows they also support a fast search through local symmetries.

Their finding extends the use of this theory to the field of quantum information science and expands the kinds of data structures on which quantum computing outperforms classical computing.

###

Jonatan Janmark, KTH Royal Institute of Technology in Stockholm, Sweden and UC San Diego's Department of Mathematics and David Meyer, professor of mathematics at UC San Diego co-authored the work.

The Defense Advanced Research Projects Agency partially supported this work as part of its Quantum Entanglement Science and Technology program. Additional funding came from the Air Force Office of Scientific Research as part of the Transformational Computing in Aerospace Science and Engineering Initiative, and the Achievement Awards for College Scientists Foundation.

Tom Wong | Eurek Alert!

Further reports about: Defense Entanglement Physical Technology classical structures symmetric technique

More articles from Physics and Astronomy:

nachricht New Insight into Molecular Processes
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Exoplanet stepping stones
21.11.2018 | W. M. Keck Observatory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>