Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Hubble Spots a Relic from a Shredded Galaxy

21.02.2012
Astronomers using NASA's Hubble Space Telescope may have found evidence for a cluster of young, blue stars encircling one of the first intermediate-mass black holes ever discovered.

Astronomers believe the black hole may once have been at the core of a now-disintegrated unseen dwarf galaxy. The discovery of the black hole and the possible star cluster has important implications for understanding the evolution of supermassive black holes and galaxies.

Astronomers know how massive stars collapse to form black holes but it is not clear how supermassive black holes, which weigh billions of times the mass of our Sun, form in the cores of galaxies. One idea is that supermassive black holes may build up through the merger of smaller black holes.

Sean Farrell of the Sydney Institute for Astronomy in Australia discovered a middleweight black hole in 2009 using the European Space Agency's XMM-Newton X-ray space telescope. Known as HLX-1 (Hyper-Luminous X-ray source 1), the black hole has an estimated weight of about 20,000 solar masses. It lies towards the edge of the galaxy ESO 243-49, 290 million light-years from Earth.

Farrell then observed HLX-1 simultaneously with NASA's Swift observatory in X-ray and Hubble in near-infrared, optical, and ultraviolet wavelengths. The intensity and the color of the light may indicate the presence of a young, massive cluster of blue stars, 250 light-years across, encircling the black hole. Hubble can't resolve the stars individually because the suspected cluster is too far away. The brightness and color is consistent with other clusters of stars seen in other galaxies, but some of the light may be coming from the gaseous disk around the black hole.

"Before this latest discovery we suspected that intermediate-mass black holes could exist, but now we understand where they may have come from," Farrell said. "The fact that there seems to be a very young cluster of stars indicates that the intermediate-mass black hole may have originated as the central black hole in a very-low-mass dwarf galaxy. The dwarf galaxy might then have been swallowed by the more massive galaxy, just as happens in our Milky Way."

From the signature of the X-rays, Farrell's team knew there would be some blue light emitted from the high temperature of the hot gas in the disk swirling around the black hole. They couldn't account for the red light coming from the disk. It would have to be produced by a much cooler gas, and they concluded this would most likely come from stars. The next step was to build a model that added the glow from a population of stars. These models favor the presence of a young massive cluster of stars encircling the black hole, but this interpretation is not unique, so more observations are needed. In particular, the studies led by Roberto Soria of the Australian International Centre for Radio Astronomy Research, using data from Hubble and the ground-based Very Large Telescope, show variations in the brightness of the light that a star cluster couldn't cause. This indicates that irradiation of the disk itself might be the dominant source of visible light, rather than a massive star cluster.

"What we can definitely say with our Hubble data is that we require both emission from an accretion disk and emission from a stellar population to explain the colors we see," said Farrell.

Such young clusters of stars are commonly found inside galaxies like the host galaxy, but not outside the flattened starry disk, as found with HLX-1. One possible scenario is that the HLX-1 black hole was the central black hole in a dwarf galaxy. The larger host galaxy may then have captured the dwarf. In this conjecture, most of the dwarf's stars would have been stripped away through the collision between the galaxies. At the same time, new young stars would have formed in the encounter. The interaction that compressed the gas around the black hole would then have also triggered star formation.

Farrell theorizes that the possible star cluster may be less than 200 million years old. This means that the bulk of the stars formed following the dwarf's collision with the larger galaxy. The age of the stars tells how long ago the two galaxies crashed into each other.

Farrell proposed for more observations this year. The new findings are published in the February 15 issue of the Astrophysical Journal. Soria and his colleagues have published their alternative conclusions in the January 17 online issue of the Monthly Notices of the Royal Astronomical Society.

For images and more information about HLX-1 and Hubble, visit:

http://hubblesite.org/news/2012/11

http://www.nasa.gov/hubble

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Ray Villard | Newswise Science News
Further information:
http://www.nasa.gov/hubble

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>