Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Movement and flow: Simulating complexity of fluids and strands in the virtual world

01.11.2019

New method to be presented at SIGGRAPH Asia

Simulating the physics behind the movement of liquids and how fluids--thick or thin--interact with other objects is a key problem in visual effects. Bringing to life such scenarios as a brush stirring and spreading oil paint onto a canvas or spaghetti tossed in pasta sauce involves sophisticated computational modeling.


A team of researchers, from Columbia University Engineering (USA) and the University of Waterloo (Canada), will present a new computer graphics method that simulates the complexity of fluids. They will present their research ACM SIGGRAPH Asia, held Nov. 17 to 20 in Brisbane, Australia.

Credit: ACM SIGGRAPH Asia

These types of scenarios, in particular, are difficult to simulate due to the complex rheology of liquid--how its shape changes and transforms with movement--and the intricate interactions between the liquid and the strands.

A team of computer scientists are addressing this problem in computer graphics with a novel, multi-scale framework that realistically and precisely imitates the complex dynamics of strands interacting with so-called shear-dependent liquids, such as mud, oil paint, melted chocolate, or pasta sauce.

The researchers, from Columbia Engineering and the University of Waterloo, are set to present their work at ACM SIGGRAPH Asia, held Nov. 17 to 20 in Brisbane, Australia. SIGGRAPH Asia, now in its 12th year, attracts the most respected technical and creative people from around the world in computer graphics, animation, interactivity, gaming, and emerging technologies.

Unique to this work is the precise modeling of the complexity of fluid-strand dynamics. Imagine for instance a bowl of spaghetti, and attempting to animate how much sauce clings onto various strands of the pasta as it is being twirled and lifted out of a bowl with a fork.

To simulate such a scenario, the researchers' method accounts for the fluid-strand interaction occurring across many scales--at both the small scale for thin strands and their surface flows and the large scale for bulk fluid.

"The multiscale nature of this problem poses a key challenge," says Yun (Raymond) Fei, lead author of the work who recently completed his PhD in computer science at Columbia. "It demands our simulation model to handle both a large chunk of fluids moving around and the small, detailed motions by strands and their surface flows."

Fei's collaborators include coauthors Christopher Batty of the University of Waterloo-Canada and from Columbia Engineering, Eitan Grinspun and Changxi Zheng.

Expanding on previous work in animating wet hair, this new computational framework accounts for the volume change of the liquid as it passes through strands and the momentum exchange between the strands and the liquid. Their framework also accounts for cohesion between strands and how the fluid motions affect the strand motion and vice versa.

The framework consists of three components: a model that simulates the fluid flowing on the surface of strands, a model that simulates the motion of individual hair strands and their collisions (e.g. the bowl of spaghetti and sauce), and a model that simulates bulk fluid moving as a continuum, such as water flowing from a faucet.

"Our algorithm brings together multiple physical models at both fine and large scales, and enables the simulation to capture highly complex, rich and multi-physics phenomena in fluid-strand interactions," says Zheng, associate professor of computer science at Columbia.

The researchers demonstrated their method on a wide range of materials and a number of examples, including challenging scenarios involving splashing, shaking, and agitating the liquid which causes the strands to stick together and become entangled. For example, to illustrate the cohesive and frictional behavior of wet hairs, the method was used to realistically simulate a hair-covered ball lifting from a mud puddle and shaking. When the motion stops, the hairs stick and tangle as expected. A video demonstration of the new method can be seen here: youtu.be/4aCPqyouQ3g.

"There is a wealth of fluid-strand examples in the physical world that we were inspired to mimic in the virtual world," says Grinspun, who conducted the research while an associate professor at Columbia Engineering; Grinspun is now professor of computer science at the University of Toronto. "What we've been able to achieve and to lend to artists and users is a precise, multi-scale technique to account for the layers of sophisticated mathematics and physics behind this complex dynamic."

The team's method can be immediately applied to the creation of special effects in the film industry. Previous work from these collaborators have been used by leading visual effects houses such as WETA Digital, and in feature films including Moana and Jungle Book. In future work, the researchers envision this method can be applied to predict how objects move and form in the production of cosmetics or in robotics design.

Media Contact

Illka Gobius
illka@pinpointpr.sg
65-976-98370

 @theofficialacm

http://www.acm.org 

Illka Gobius | EurekAlert!
Further information:
http://www.cs.columbia.edu/cg/creamystrand/

More articles from Physics and Astronomy:

nachricht Something is Lurking in the Heart of Quasar 3C 279
08.04.2020 | Max-Planck-Institut für Radioastronomie

nachricht Condensed matter: Bethe strings experimentally observed
08.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

 
Latest News

Something is Lurking in the Heart of Quasar 3C 279

08.04.2020 | Physics and Astronomy

Looking for new antibiotics

08.04.2020 | Life Sciences

Artificial light in the Arctic

08.04.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>