Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mission completed – EU partners successfully test new technologies for space robots in Morocco

10.01.2019

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week field test campaign. With its barren outcrops and reddish ridges the landscape is remarkably similar to the topography of Mars.


The hybrid walking and driving rover "SherpaTT" in the desert of morocco.

DFKI GmbH, photo: Florian Cordes


The camp in the desert at night.

DFKI GmbH, photo: Thomas Frank

There, the European research team was able to test robots, sensors and software under conditions much closer to the real conditions of future planetary exploration missions than those that can be found in the lab.

"Only through such field tests we can have high confidence that the software and hardware we developed will work as planned under the harsh environmental conditions that prevail on Mars and Moon. We do test software and hardware in labs and in computer simulations.

In these we simulate what we imagine, but reality provides for unforeseen situations. The variability that nature brings - from lighting conditions to the shapes of the landscape, to the structures of the sand and rocks - cannot be simulated reliably, it can only be experienced in field tests" says Gianfranco Visentin, Head of Automation and Robotics at the European Space Agency (ESA) and coordinator of the EU project PERASPERA.

In the PERASPERA project, the European Space Agency (ESA), the German Aerospace Center (DLR), and the national space agencies of France, Spain, Italy and Great Britain work together to develop the research roadmap for the EU’s Strategic Research Cluster (SRC) on Space Robotics Technologies and to oversee the implementation of the various research projects funded by this program.

An important part of the SRC roadmap are extensive tests and evaluation measures for the technologies developed in various sub-projects. This includes the field tests in Morocco, which were organized by DFKI's Robotics Innovation Center as part of the FACILITATORS project (led by the Spanish company GMV).

The first two weeks of the Morocco campaign were used to set up and prepare all hardware and software systems in a workshop near the base-camp in Erfoud. In addition, a detailed digital elevation map of the test area was prepared using a flight drone from ESA. At the end of November, the scientists finally set up their field camp in the desert near Rissani, about 30 km southwest of Erfoud.

There, they tested the software for autonomous robot behaviour and data fusion. These systems had been developed as part of the EU projects ERGO – coordinated by GMV from Spain – and InFUSE, coordinated by Space Applications from Belgium.

The robotic platform used in the tests was the SherpaTT robot provided by DFKI. This hybrid robot with four “wheeled” legs can drive and walk. It represents a new type of robots for space exploration. In addition, a pair of “classic” 4-wheeled rovers, MINNI and MANNA provided by CNRS-LAAS (Toulouse, France), as well as the Handheld Central Rover Unit (HCRU), a sensor module developed by the DLR institute in Oberpfaffenhofen, Germany, were used in the field trials.

Inspired by planetary exploration scenarios such as the NASA Mars Sample Return Mission, the SherpaTT rover used the new software to perform an autonomous long-distance exploration mission. To take a soil sample at a remote destination, the rover covered a distance of more than 1.3 km, traversing wide plains and finding its way around steep cliffs and deep gorges in the Moroccan desert landscape.

The results of the tests and the data collected by the rovers in Morocco represent great success and a significant test dataset for analogue simulations. During the field tests, the project partners could demonstrate not only that the developed software modules work under Mars-like conditions, but also compile a valuable database for further research work.

The successfully tested "Space Robotics Technologies" will now serve as core components for more complex robotics applications, which are planned to be developed from 2019 to 2021 in a second series of EU-funded R&D projects.

Further information:
Strategic Research Clusters (SRC) on Space Robotics Technologies/PERASPERA: www.h2020-peraspera.eu/
ERGO: www.h2020-ergo.eu/ 
ESROCOS: www.h2020-esrocos.eu/ ; www.dfki.de/robotik/en/research/projects/esrocos.html 
FACILITATORS: www.h2020-facilitators.eu ; www.dfki.de/robotik/en/research/projects/facilitators.html 
INFUSE: www.h2020-infuse.eu ; www.dfki.de/robotik/en/research/projects/infuse.html

Photos:
Photos are available under https://cloud.dfki.de/owncloud/index.php/s/rR3HgDdByYWZojg for download. You can use these images when citing the source „DFKI GmbH“.

Contact:
German Research Center for Artificial Intelligence (DFKI GmbH)
Robotics Innovation Center
Dr.-Ing. Thomas Vögele
Mail: Thomas.Voegele@dfki.de
Phone: +49 30 23895 1860

Press contact:
German Research Center for Artificial Intelligence (DFKI GmbH)
Unternehmenskommunikation Bremen
Mail: uk-hb@dfki.de
Phone: + 49 421 178 45 4180

Andrea Fink DFKI Bremen | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Double layer of graphene helps to control spin currents
18.10.2019 | University of Groningen

nachricht Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling
17.10.2019 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>