Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Stirrer Levitation: The Flight of the Humble Flea

08.08.2018

Göttingen Max Planck scientist discovers an entirely new method of levitation

The idea of levitation has inspired technology such as Maglev trains, and innumerable works of fiction, like hover-boards from the „Back to the Future“ trilogy or even a common image of a witch flying on her broomstick over a sleeping village.


Top: Image of the levitating flea in Castor Oil. Bottom: A 3D spiral rendered by combining experimental images of the flea over a 1 s period.

However, most real-world applications require either highly specialized equipment, or sub-zero temperatures, which makes them not easily practicable in our everyday life. Here, a researcher from the Max Planck Institute for Dynamics and Self-organization (MPIDS) demonstrates a ground-breaking approach that will make magnetic levitation more accessible to a wider range of technical applications.

The new method uses a simple tool that most laboratories world-wide already possess: a magnetic stirrer, a device that employs a rotating magnetic field to cause a stirring bar immersed in a liquid to spin very quickly, thus mixing it.

Since its invention in 1942, it has been known that if such a stirrer is driven too quickly, the stirring bar-magnet will hop erratically on the base of the container – hence its nickname „the flea“. MPIDS scientist Dr. Kyle Baldwin finds that if the viscosity of the liquid in a container is similar to that of honey, the flea stops hopping and instead jumps up and levitates within the liquid.

„We stumbled upon this phenomenon whilst mixing high viscosity polymer solutions, and were fascinated,“ recalls Kyle, the first author of the paper. Alongside researchers from Nottingham, Kyle carefully analyzed the motion of the levitating flea in a large series of experiments and found that its motion is systematic.

The stirring bar waggles back-and-forth, pumping fluid out to the sides, which experiment and simulations show stabilizes its position. Intriguingly, if the viscosity is reduced, the fluid is pumped in the opposite direction, and the flea falls.

„Our discovery should motivate the design of bi-directional fluidic pumps, improve understanding of effective swimming methods, and provide a new levitation route for container-less storage or friction-less transport", explains Dr. Baldwin.

This fundamental discovery could be used in robotics and provide new opportunities in nano-technology and medicine, such as providing easily controllable artificial micro swimmers for a better diagnostic. New horizons that are being opened by the discovery are truly breath taking! However, it is still unlikely to make flying broomsticks a reality.

Originalpublikation:

https://journals.aps.org/prl/accepted/43075Y94Afb11f5534792c45ecaa8e6270ea7376a

Carolin Hoffrogge | Max-Planck-Institut für Dynamik und Selbstorganisation
Further information:
http://www.ds.mpg.de/

More articles from Physics and Astronomy:

nachricht Journey to the center of Mars
20.02.2020 | Tohoku University

nachricht Laser writing enables practical flat optics and data storage in glass
20.02.2020 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>