Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers create table-top supernova

02.06.2014

Laser beams 60,000 billion times more powerful than a laser pointer have been used to recreate scaled supernova explosions in the laboratory as a way of investigating one of the most energetic events in the Universe.

Supernova explosions, triggered when the fuel within a star reignites or its core collapses, launch a detonation shock wave that sweeps through a few light years of space from the exploding star in just a few hundred years. But not all such explosions are alike and some, such as Cassiopeia A, show puzzling irregular shapes made of knots and twists.

To investigate what may cause these peculiar shapes an international team led by Oxford University scientists (groups of Professor Gregori and Professor Bell in Atomic and Laser Physics, and Professor Schekochihin in Theoretical Physics) has devised a method of studying supernova explosions in the laboratory instead of observing them in space.

'It may sound surprising that a table-top laboratory experiment that fits inside an average room can be used to study astrophysical objects that are light years across,' said Professor Gianluca Gregori of Oxford University's Department of Physics, who led the study published in Nature Physics. 'In reality, the laws of physics are the same everywhere, and physical processes can be scaled from one to the other in the same way that waves in a bucket are comparable to waves in the ocean. So our experiments can complement observations of events such as the Cassiopeia A supernova explosion.'

The Cassiopeia A supernova explosion was first spotted about 300 years ago in the Cassiopeia constellation 11,000 light years away, its light has taken this long to reach us. The optical images of the explosion reveal irregular 'knotty' features and associated with these are intense radio and X-ray emissions. Whilst no one is sure what creates these phenomena one possibility is that the blast passes through a region of space that is filled with dense clumps or clouds of gas.

To recreate a supernova explosion in the laboratory the team used the Vulcan laser facility at the UK's Science and Technology Facilities Council's Rutherford Appleton Lab. 'Our team began by focusing three laser beams onto a carbon rod target, not much thicker than a strand of hair, in a low density gas-filled chamber,' said Ms Jena Meinecke an Oxford University graduate student, who headed the experimental efforts. The enormous amount of heat generated more than a few million degrees Celsius by the laser caused the rod to explode creating a blast that expanded out through the low density gas. In the experiments the dense gas clumps or gas clouds that surround an exploding star were simulated by introducing a plastic grid to disturb the shock front.

'The experiment demonstrated that as the blast of the explosion passes through the grid it becomes irregular and turbulent just like the images from Cassiopeia,' said Professor Gregori. 'We found that the magnetic field is higher with the grid than without it. Since higher magnetic fields imply a more efficient generation of radio and X-ray photons, this result confirms that the idea that supernova explosions expand into uniformly distributed interstellar material isn't always correct and it is consistent with both observations and numerical models of a shockwave passing through a 'clumpy' medium.'

'Magnetic fields are ubiquitous in the universe,' said Don Lamb, the Robert A. Millikan Distinguished Service Professor in Astronomy & Astrophysics at the University of Chicago. 'We're pretty sure that the fields didn't exist at the beginning, at the Big Bang. So there's this fundamental question: how did magnetic fields arise?' These results are significant because they help to piece together a story for the creation and development of magnetic fields in our Universe, and provide the first experimental proof that turbulence amplifies magnetic fields in the tenuous interstellar plasma.

The advance was made possible by the extraordinarily close cooperation between the teams performing the experiments and the computer simulations. 'The experimentalists knew all the physical variables at a given point. They knew exactly the temperature, the density, the velocities,' said Petros Tzeferacos of the University of Chicago, a study co-author. 'This allows us to benchmark the code against something that we can see.' Such benchmarking – called validation – shows that the simulations can reproduce the experimental data. The simulations consumed 20 million processing hours on supercomputers at Argonne National Laboratory, in the USA.

A report by the team, including researchers from the University of Oxford, the University of Chicago, ETH Zurich, the Queen's University Belfast, the Science and Technology Facilities Council, the University of York, the University of Michigan, Ecole Polytechnique, Osaka University, the University of Edinburgh, the University of Strathclyde and the Lawrence Livermore National Laboratory is published in Nature Physics.

###

Funding for this research was provided by the European Research Council, the UK's Science and Technology Facilities Council, and the US Department of Energy through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

University of Oxford News Office | Eurek Alert!
Further information:
http://www.ox.ac.uk/

Further reports about: Cassiopeia Facilities Laboratory Oxford Physics Technology X-ray clouds dense experiments explosions images irregular waves

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>