Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State physics researchers find new properties of the carbon material graphene

31.05.2012
Findings could have applications in high-speed communications fields.
Graphene has caused a lot of excitement among scientists since the extremely strong and thin carbon material was discovered in 2004. Just one atom thick, the honeycomb-shaped material has several remarkable properties combining mechanical toughness with superior electrical and thermal conductivity.

Now a group of scientists at Iowa State University, led by physicist Jigang Wang, has shown that graphene has two other properties that could have applications in high-speed telecommunications devices and laser technology – population inversion of electrons and broadband optical gain.
Wang is an assistant professor in the Department of Physics and Astronomy in the College of Liberal Arts and Sciences at Iowa State University. He also is an associate scientist with the Department of Energy's Ames Laboratory.

Wang's team flashed extremely short laser pulses on graphene. The researchers immediately discovered a new photo-excited graphene state characterized by a broadband population inversion of electrons. Under normal conditions, most electrons would occupy low-energy states and just a few would populate higher-energy states. In population-inverted states, this situation is reversed: more electrons populate higher, rather than lower, energy states. Such population inversions are very rare in nature and can have highly unusual properties. In graphene, the new state produces an optical gain from the infrared to the visible.
Simply stated, optical gain means more visible light comes out than goes in. This can only happen when the gain medium is externally pumped and then stimulated with light (stimulated emission). Wang’s discovery could open doors for efficient amplifiers in the telecommunication industry and extremely fast opto-electronics devices.

Graphene as a gain medium for light amplification

"It's very exciting," Wang said. "It opens the possibility of using graphene as a gain medium for light amplification. It could be used in making broadband optical amplifiers or high-speed modulators for telecommunications. It even provides implications for development of graphene-based lasers."

Wang's team unveiled its findings in the journal Physical Review Letters on April 16. In addition to Wang, the paper's other authors are Tianq Li, Liang Luo and Junhua Zhang, Iowa State physics graduate students; Miron Hupalo, Ames Laboratory scientist; and Michael Tringides and Jörg Schmalian, Iowa State physics professors and Ames Laboratory scientists.

Wang is a member of the Condensed Matter Physics program at Iowa State and the Ames Laboratory. He and his team conduct optical experiments using laser spectroscopy techniques, from the visible to the mid-infrared and far-infrared spectrum. They use ultrashort laser pulses down to 10 quadrillionths of a second to study the world of nanoscience and correlated electron materials.
In 2004 United Kingdom researchers Andre Geim and Konstantin Novoselov discovered graphene, which led to their winning the 2010 Nobel Prize in Physics. Graphene is a two-dimensional (height and width) material with a growing list of known unique properties. It is a single layer of carbon only one atom thick. The carbon atoms are connected in a hexagonal lattice that looks like a honeycomb. Despite a lack of bulk, graphene is stronger than steel, it conducts electricity as well as copper and conducts heat even better. It is also flexible and nearly transparent.

An understanding gap existed, Wang explained, between the two scientific communities that studied the electronic and photonic properties of graphene. He believed his group could help bridge the gap by elaborating the non-linear optical properties of graphene and understanding the non-equilibrium electronic state. Wang explained that linear optical properties only transmit light – one light signal comes into a material and one comes out. "The non-linear property can change and modulate the signal, not just transmit it, producing functionality for novel device applications."

Graphene in a highly non-linear state
Wang said other scientists have studied graphene's optical properties, but primarily in the linear regime. His team hypothesized they could generate a new "very unconventional state" of graphene resulting in population inversion and optical gain.

"We were the first group to break new ground, to start looking at it in a highly excited state consisting of extremely dense electrons – a highly non-linear state. In such a state, graphene has unique properties."

Wang's group started with high-quality graphene monolayers grown by Hupalo and Tringides in the Ames Laboratory. The researchers used an ultrafast laser to "excite" the material's electrons with short pulses of light just 35 femtoseconds long (35 quadrillionths of a second). Through measurements of the photo-induced electronic states, Wang's team found that optical conductivity (or absorption) of the graphene layers changed from positive to negative – resulting in the optical gain – when the pump pulse energy was increased above a threshold.

The results indicated that the population inverted state in photoexcited graphene emitted more light than it absorbed. "The absorption was negative. It meant that population inversion is indeed established in the excited graphene and more light came out of the inverted medium than what entered, which is optical gain," Wang said. "The light emitted shows gain of about one percent for a layer a mere one atom thick, a figure on the same order to what's seen in conventional semiconductor optical amplifiers hundreds of times thicker."

The key to the experiments, of course, was creating the highly non-linear state, something "that does not normally exist in thermal equilibrium," Wang said. "You cannot simply put graphene under the light and study it. You have to really excite the electrons with the ultrafast laser pulse and have the knowledge on the threshold behaviors to arrive at such a state."

Wang said a great deal more engineering and materials perfection lies ahead before graphene's full potential for lasers and optical telecommunications is ever realized. "The research clearly shows, though, that lighting up graphenes may produce brighter emissions as well as a bright future," he said.

NEWS RELEASE
College of Liberal Arts and Sciences (www.las.iastate.edu)
Iowa State University

Contacts:
Jigang Wang Physics, (515) 294-5630, jgwang@iastate.edu
Steve Jones, Liberal Arts & Sciences Communications, (515) 294-0461, jones@iastate.edu

Jigang Wang | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Cherned up to the maximum
10.07.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>