Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How fluids flow through shale

03.05.2017

New shale modeling may lead to more efficient extraction of oil and natural gas

Most of the world's oil and natural gas reserves may be locked up inside the tiny pores comprising shale rock. But current drilling and fracturing methods can't extract this fuel very well, recovering only an estimated 5 percent of oil and 20 percent of gas from shale. That's partly due to a poor understanding of how fluids flow through these small pores, which measure only nanometers across.


The pore network of the Woodford shale sample (left) and the fluid that fills the pores according to the computer model (right).

Credit: Yidong Xia

But new computer simulations, described this week in the journal Physics of Fluids, from AIP Publishing, can better probe the underlying physics, potentially leading to more efficient extraction of oil and gas.

With more porous rocks like sandstone, where the pores are as big as a few millimeters, oil and gas companies can more easily extract the fuel by injecting water or steam into the ground, forcing out the oil or gas.

"Their physical characteristics are well understood," said Yidong Xia, a computational scientist at Idaho National Laboratory. "There are a lot of well-calibrated mathematical models to design the engineering tools for extracting the oil."

But that's not the case for shale.

"The difficulty is that the pore size is very small, and most of them are scattered -- they're isolated," Xia said. "So if you can fill part of the pores with water, there's no way it can move into other pores."

Hydraulic fracturing can create cracks that connect those pores, but without a solid understanding of the pore distribution and structure of the shale, oil and gas companies are working blind.

To better understand the physics of how fluids like water, oil and gas flow through such tiny pores, researchers have increasingly turned to computer simulations. Yet those too have been limited. When pores are large, fluid moves as a smooth continuum and models can treat it as such. But with nanoscale pores in shale, the fluid acts more like a collection of particles.

In principle, a computer can simulate the behavior of every individual molecule that makes up the fluid, Xia said. But that would take too much computing power to be practical.

Instead, Xia and his colleagues used what's called a coarse-grain approach. They modeled the fluid as a collection of particles in which each particle represents a cluster of a few molecules. This dramatically cuts down on how much computational muscle is needed.

What also sets these new results apart is the incorporation of high-resolution imagery of shale samples. Researchers at the University of Utah used focused ion beam scanning electron microscopy on a piece of Woodford shale a few millimeters in diameter. The ion beam in this method cuts through the sample, scanning each slice to generate a 3-D image of the rock and its detailed pore structure at the nanometer scale. Those images are then fed into the computer model to simulate fluid flow through the scanned nanostructures.

"The combination [of microscopy and simulations] is what really produces meaningful results," Xia said.

Still, these kinds of simulations alone won't revolutionize shale oil and gas extraction, he said. You would need a broader understanding of the entire structure of the shale, not just small samples. But, he said, you could take multiple samples throughout the shale and run computer simulations to gain more insight into its physics.

To be clear, Xia added, they're not endorsing any particular technology or energy source. As researchers, their focus is to simply better understand the basic physics of shale.

###

The article, "Many-body dissipative particle dynamics modeling of fluid flow in fine-grained nanoporous shales," is authored by Yidong Xia, Jan Goral, Hai Huang, Ilija Miskovic, Paul Meakin and Milind Deo. The article will appear in Physics of Fluids May 2, 2017 (DOI: 10.1063/1.4981136). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4981136.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See http://pof.aip.org.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @jasonbardi

http://www.aip.org 

 

Julia Majors | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>