Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a magnet could help boost understanding of superconductivity

05.03.2020

Physicists unravel a mystery behind the strange behavior of electrons in a ferromagnet

Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity.


Entangled electrons in quantum mechanics can be visualized as connected by an invisible thread, so an 'up-spin' on the left electron (red) forces the other electron to be 'spin-down' (red) and vice-versa (green).

Credit: Yashar Komijani

A Rutgers co-authored study of the unusual ferromagnetic material appears in the journal Nature.

The Rutgers Center for Materials Theory, a world leader in the field, studies "quantum phase transitions." Phase transitions, such as when ice melts, usually require heat to jiggle atoms and melt ice crystals. Quantum phase transitions are driven by the jiggling of atoms and electrons that result from fluctuations that never cease even at low temperatures.

A quantum phase transition can be achieved by tuning a material to enhance quantum fluctuations, either by applying a magnetic field or exposing it to intense pressure when the temperature is near absolute zero. In certain quantum phase transitions, the quantum fluctuations become infinitely intense, forming a "quantum critical point." These unusual states of matter are of great interest because of their propensity to form superconductors. Think of it as like an electronic stem cell, a form of matter that can transform itself in many ways.

Meanwhile, in the weird world of quantum mechanics, "entanglement" allows something to be in two different states or places at the same time. The Austrian physicist Erwin Schrödinger's famous thought experiment, which features a cat that is simultaneously dead and alive, is an example of entanglement.

Inside materials with electrons moving through them, entanglement often involves the spin of electrons, which can be simultaneously up and down. Typically, only electrons near each other are entangled in quantum materials, but at a quantum critical point, the entanglement patterns can change abruptly, spreading out across the material and transforming it. Electrons, even distant ones, become entangled.

Ferromagnets are an unlikely setting for studying quantum entanglement because the electrons moving through them align in one direction instead of spinning up and down. But physicists found that the ferromagnetism in "Cerge," (CeRh6Ge4) a ferromagnet, must have a large amount of entanglement with electrons that spin up and down and are connected with each other. That had never been seen in ferromagnets.

"We believe our work, connecting entanglement with the strange metal and ferromagnets, provides important clues for our efforts to understand superconductors that work at room temperature," said co-author Piers Coleman, a professor in the Department of Physics and Astronomy in the School of Arts and Sciences at Rutgers University-New Brunswick. "As we learn to understand how nature controls entanglement in matter, we hope we'll develop the skills to control quantum entanglement inside quantum computers and to design and develop new kinds of quantum matter useful for technology."

Rutgers scientists have used some of their findings to propose a new theory for a family of iron-based superconductors that were discovered about 10 years ago. "If we are right, these systems, like ferromagnets, are driven by forces that like to align electrons," Coleman said.

Yashar Komijani, a Rutgers post-doctoral associate, is one of three co-lead authors. Scientists at Zhejiang University in China, Max Planck Institute for Chemical Physics of Solids in Germany and Nanjing University in China contributed to the study.

Media Contact

Todd Bates
todd.bates@rutgers.edu
848-932-0550

 @RutgersU

http://www.rutgers.edu 

Todd Bates | EurekAlert!
Further information:
https://www.rutgers.edu/news/how-magnet-could-help-boost-understanding-superconductivity
http://dx.doi.org/10.1038/s41586-020-2052-z

More articles from Physics and Astronomy:

nachricht On-chip spin-Hall nanograting for simultaneously detecting phase and polarization singularities
07.07.2020 | Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

nachricht 'Growing' active sites on quantum dots for robust H2 photogeneration
07.07.2020 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>