Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gravitational wave astronomy: Black holes have no hair


With the help of NASA’s Spitzer Space Telescope, an international team of researchers has confirmed that the cosmic object OJ 287 is a distant galaxy with a binary system of two supermassive black holes in its centre, which are orbiting each other. With the measurement data that the scientists present in today’s issue of the “Astrophysical Journal Letters”, they also verify the “no-hair” theorem of black holes. Astrophysicists from the Friedrich Schiller University Jena are among the authors of the study (

It took more than 100 years until the existence of gravitational waves predicted by Albert Einstein in 1915 as part of his general theory of relativity was finally proven in an experiment.

Illustration of the centre of OJ 287. Two supermassive black holes are revolving around each other on relativistic orbits with an orbital period of 12 years.


Image of OJ 287 taken in the R-band (659nm) with the Schmidt-Teleskop-Kamera at the 0.9-metre reflector at the University Observatory in Großschwabhausen.

M. Mugrauer, F. Hildebrandt/FSU

The first observation of gravitational wave signals in 2015, resulting from the merger of two stellar black holes, marked the beginning of the era of gravitational wave astronomy.

Now, astrophysicists want to write a new chapter and detect gravitational waves in the nanohertz range, which e.g. supermassive black holes orbiting one another create, long before they collide.

An international team of almost 30 research institutions from all over the world has now indirectly detected such a system of supermassive black holes. The scientists have proven that the quasar OJ 287–located approximately four billion light years away in the Cancer constellation–is a binary system of two supermassive black holes whose interaction is believed to lead to the emission of nanohertz gravitational waves.

In the current issue of the “Astrophysical Journal Letters”, they present their observational data recorded last year. “The measurements of the Spitzer Space Telescope were assisted by ground based observations”, says Dr Markus Mugrauer from the Astrophysical Institute and University Observatory of the Friedrich Schiller University Jena. Both the astrophysicist and Jena physics student Felix Hildebrandt co-authored the current study. They spent many clear nights observing OJ 287 from the University Observatory, located in Großschwabhausen.

The researchers argue that their observations very precisely confirm predictions made based on the general theory of relativity. “We already knew that OJ 287 is a quasar, a quasi-stellar object. It looks like a star through a telescope, but in fact it is the extremely luminous centre of a galaxy far away,” explains Mugrauer.

What is striking about OJ 287 is the temporal variability of its luminosity: twice in twelve years, the brightness of OJ 287 increases significantly within only two days compared to the rest of the time. Astronomers had attributed this strange behaviour to the theory that there is not only one black hole in the centre of OJ 287, but two supermassive black holes that revolve around each other in an orbital period of twelve years.

This was only a theory—until a recent observation has provided evidence. Calculations predicted another optical outburst of OJ 287 for the morning of 31 July 2019. “On its orbit, the secondary black hole punches through a gaseous accretion disk that surrounds the primary black hole,” explains Mugrauer. Every time this happens, extremely hot gas is released in a big explosion—the outburst that can be observed from the Earth.

The outburst calculated to happen in 2019 was predicted to be similar to the one observed in 2007, because the secondary black hole passed through the disk surrounding the primary black hole in almost the same point and direction than 12 years before. And the astrophysicists were able to show exactly that: The telescope registered the expected signal of the outburst in OJ 287's light curve, with a deviation of less than four hours from the predicted time.

With the help of these observations that are published now, the team of researchers was moreover able to verify a fundamental theorem of black hole physics called “no-hair” theorem. The theorem states that black holes are plain bodies—jokingly “without hair”—, which rules out any unevenness in their event horizons.

One way to prove this theorem is to examine a satellite’s movement around a black hole with great precision: If a black hole had edges–”hair”–, then the orbit of the satellite should change in a measurable way. The data recorded now and earlier observations of OJ 287’s outbursts allowed to determine the orbit of the secondary black hole very precisely, which validates the "no hair" theorem.

“The research results we present in our study show the importance of university observatories,” Mugrauer summarizes. “Not only do they provide important calibration data for space observation, but they also enable us to continuously observe celestial objects over a very long period of time.” In addition, these observatories allow physics students to directly collaborate in international astrophysical research projects.

Wissenschaftliche Ansprechpartner:

Dr Markus Mugrauer
Astrophysical Institute and University Observatory Jena
Schillergäßchen 2, 07745 Jena
Telephone: +49 3641 9-47514


Laine et al., Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287, Astrophysical Journal Letters (2020), 894, L1 (

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft
Further information:

More articles from Physics and Astronomy:

nachricht Excitation of robust materials
07.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>