Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment obtains entanglement of six light waves with a single laser

07.09.2018

Record set by Brazilian researchers can help make quantum computing feasible

Austrian physicist Erwin Schrödinger (1887-1961), one of the giants of contemporary science, considered "entanglement" the most interesting property in quantum mechanics. In his view, it was this phenomenon that truly distinguished the quantum world from the classical world.


Record set by Brazilian researchers can help make quantum computing feasible. Articles highlighted in Physical Review Letters and Physical Review A.

Credit: Marcelo Martinelli (IFUSP)

Entanglement occurs when groups of particles or waves are created or interact in such a way that the quantum state of each particle or wave cannot be described independently of the others, however far apart they are.

Experiments performed at the University of São Paulo's Physics Institute (IF-USP) in Brazil have succeeded in entangling six light waves generated by a simple laser light source known as an optical parametric oscillator.

Articles about these experiments have been published in Physical Review Letters ("Hexapartite entanglement in an above-threshold optical parametric oscillator") and Physical Review A ("Exploring six modes of an optical parametric oscillator"). The experiments are highlighted in a special news feature posted to the publications' website.

"Our platform is capable of generating a massive entanglement of many optical modes with different but well-defined frequencies, as if connecting the nodes of a large network. The quantum states thus produced can be controlled by a single parameter: the power of the external laser that pumps the system," said Marcelo Martinelli, one of the coordinators of the experiments.

Martinelli is a professor at IF-USP and the principal investigator for the Thematic Project "Exploring quantum information with atoms, crystals and chips" funded by São Paulo Research Foundation - FAPESP. The experiments were performed under the aegis of this Thematic Project.

"Entanglement is a property that involves quantum correlations between distinct systems," Martinelli said. "These correlations are a major asset that can make quantum computers superior to traditional electronic computers in performing tasks such as simulations or prime number factoring, a critical operation for data security in today's world. For this reason, the creation of systems with multiple entangled components is an important challenge in implementing the ideas of quantum information theory."

Faster processing

In previous research, the IF-USP team entangled two and three modes with the optical parametric oscillator. Their latest experiments have doubled the space available for information to be encoded.

This idea is easier to understand through an analogy. The classical bit (binary digit) is a two-state system that can be in only one state at any given time - either zero or one. This is the basis of binary logic. The qubit (quantum bit) can represent a one, a zero or any quantum superposition of these two states, so it can encode more information than a classical bit.

Entanglement corresponds to the nonlocal correlation of several qubits. Nonlocality is an intrinsic characteristic of nature and one of the key differences between quantum physics and classical physics, which recognizes only local correlations.

Martinelli explained how this general principle is demonstrated in the experiments in question. "A laser supplies all the energy for the process," said the coordinator for the FAPESP Thematic Project. "The light beam produced by this laser hits a crystal and generates two other fields, which maintain the characteristics of the laser: intense monochrome light with well-defined frequencies. The system therefore now consists of three intense fields. Each intense field couples a pair of extremely weak fields, so that the six fields are coupled to the main field. The correlations between them are stronger than the correlations that are feasible if independent lasers are used."

The device that generates the entangled states - the optical parametric oscillator - consists of a small crystal between two mirrors. The crystal is 1 cm long, and the distance between the mirrors is less than 5 cm. However, because cooling is a necessary condition for the process, the crystal and mirrors are placed inside an aluminum box in a vacuum to avoid condensation and to prevent the system from freezing.

The information that can be encoded by a single wave is limited by the uncertainty principle. In this case, the wave amplitude and phase behave as analogues of particle position and velocity, the variables considered by Werner Heisenberg (1901-76) in formulating the principle.

"With entanglement, part of the information in each particular wave is lost, but the global information in the system is preserved, in a shared form," Martinelli said. "Sharing means that when we observe a single wave, we're informed about the other five at the same time. Each beam goes to a detector, and this distribution of the information into independent units boosts the processing speed."

The six waves comprise a set. When information is obtained from one wave, information is obtained on the entire system. When one is changed, the entire system is changed.

###

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. For more information: http://www.fapesp.br/en.

Media Contact

Joao Carlos da Silva
jsilva@fapesp.br
55-113-838-4381

 @AgencyFAPESP

http://www.fapesp.br 

Joao Carlos da Silva |
Further information:
http://agencia.fapesp.br/28637
http://dx.doi.org/10.1103/PhysRevA.98.023823

More articles from Physics and Astronomy:

nachricht Statistical inference to mimic the operating manner of highly-experienced crystallographer
18.09.2019 | Japan Science and Technology Agency

nachricht Scientists create fully electronic 2-dimensional spin transistors
18.09.2019 | University of Groningen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>