Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European researchers develop a new technique to forecast geomagnetic storms

30.08.2018

A new analytical method, capable of accounting for systems in a state far from equilibrium, better predicts solar flares from the sun and geomagnetic storms on Earth.

The Earth's magnetic field extends from pole to pole and is strongly affected by solar wind from the sun. This "wind" is a stream of charged particles constantly ejected from the sun's surface. Occasional sudden flashes of brightness known as solar flares release even more particles into the wind. Sometimes, the flares are followed by coronal mass ejections that send plasma into space.


This is an artist's depiction of solar wind particles interacting with Earth's magnetosphere. Sizes are not to scale.

Credit: NASA via Wikicommons

The resulting flux of charged particles travels millions of miles from the sun to the Earth. When they arrive here, the particles wreak havoc on the Earth's magnetic field. The result can be beautiful but also destructive: auroras and geomagnetic storms. The storms are serious and interfere with a number of important technologies, including GPS signaling and satellite communications. They can also cause damage to surface electrical grids. Solar activity appears random, making it difficult for us to predict these storms.

In the journal Chaos, from AIP Publishing, a group of investigators from Europe, led by Reik Donner at Potsdam Institute for Climate Impact Research in Germany, reports a new method for analyzing magnetic field data that might provide better short-term forecasting of geomagnetic storms.

This new method relies on a technique developed for systems in a state far from equilibrium. Earth's magnetic field fits this paradigm because the field is driven far away from equilibrium by the solar wind. Systems that are far from equilibrium often undergo abrupt changes, such as the sudden transition from a quiescent state to a storm.

The investigators used hourly values of the Disturbance storm-time, or Dst, index. Dst values give the average deviation of the horizontal component of the Earth's magnetic field from its normal value. This deviation occurs when a large burst of charged particles arrives from the sun and weakens the field generated by the Earth.

The Dst values form a single stream of numbers known as a time series. The time series data can then be recast into a 2D or 3D image by plotting one data point against another at a fixed amount of time into the future for forecasting.

Here, the authors created a diagram known as a recurrence plot from the reconstructed data. The recurrence plot is an array of dots typically distributed nonuniformly across the graph. The authors used their data to look at a pair of geomagnetic storms that occurred in 2001 from large solar flares a couple of days prior to the storm.

They used a method known as recurrence quantification analysis to show that long diagonal lines in these recurrence plots indicate more predictable geomagnetic behavior. The method reported here is particularly well-suited to distinguish between different types of geomagnetic field fluctuations. The technique allows researchers to characterize these differences with an accuracy not previously achieved.

###

The article, "Temporal organization of magnetospheric fluctuations unveiled by recurrence patterns in the Dst index," is authored by Reik V. Conner, Veronika Stolbova, Georgios Balasis, Jonathan F. Donges, Marina Georgious, Stelios M. Potirakis and Jurgen Kurths. The article appeared in Chaos Aug. 28, 2018, (DOI: 10.1063/1.5024792) and can be accessed at https://aip.scitation.org/doi/10.1063/1.5024792.

ABOUT THE JOURNAL

Chaos is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See http://chaos.aip.org.

Media Contact

Rhys Leahy
media@aip.org
301-209-3090

 @AIPPhysicsNews

http://www.aip.org 

Rhys Leahy | EurekAlert!
Further information:
http://dx.doi.org/10.1063/1.5024792

Further reports about: equilibrium geomagnetic storms magnetic field solar flares solar wind

More articles from Physics and Astronomy:

nachricht Light provides spin
19.09.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht The surprising environment of an enigmatic neutron star
18.09.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>