Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crash! Scientists explain what happens when nanoparticles collide

05.04.2018

Study results could one day inform the design of new materials for protective gear, energy-harvesting devices and more

Helmets that do a better job of preventing concussions and other brain injuries. Earphones that protect people from damaging noises. Devices that convert "junk" energy from airport runway vibrations into usable power.


A digital reconstruction shows how individual atoms in two largely spherical nanoparticles react when the nanoparticles collide in a vacuum. In the reconstruction, the atoms turn blue when they are in contact with the opposing nanoparticle.

Credit: Yoichi Takato

Usage Restrictions: This animation may only be used in news stories discussing the research described in the associated press release.

New research on the events that occur when tiny specks of matter called nanoparticles smash into each other could one day inform the development of such technologies.

Using supercomputers, scientists led by the University at Buffalo modeled what happens when two nanoparticles collide in a vacuum. The team ran simulations for nanoparticles with three different surface geometries: those that are largely circular (with smooth exteriors); those with crystal facets; and those that possess sharp edges.

... more about:
»Crash »energy transport »nanoparticle

"Our goal was to lay out the forces that control energy transport at the nanoscale," says study co-author Surajit Sen, PhD, professor of physics in UB's College of Arts and Sciences. "When you have a tiny particle that's 10, 20 or 50 atoms across, does it still behave the same way as larger particles, or grains? That's the guts of the question we asked."

"The guts of the answer," Sen adds, "is yes and no."

"Our research is useful because it builds the foundation for designing materials that either transmit or absorb energy in desired ways," says first author Yoichi Takato, PhD. Takato, a physicist at AGC Asahi Glass and former postdoctoral scholar at the Okinawa Institute of Science and Technology in Japan, completed much of the study as a doctoral candidate in physics at UB. "For example, you could potentially make an ultrathin material that is energy absorbent. You could imagine that this would be practical for use in helmets and head gear that can help to prevent head and combat injuries."

The study was published on March 21 in Proceedings of the Royal Society A by Takato, Sen and Michael E. Benson, who completed his portion of the work as an undergraduate physics student at UB. The scientists ran their simulations at the Center for Computational Research, UB's academic supercomputing facility.

Additional multimedia not available through EurekAlert! can be found at http://www.buffalo.edu/news/releases/2018/04/008.html.

What happens when nanoparticles crash

The new research focused on small nanoparticles -- those with diameters of 5 to 15 nanometers. The scientists found that in collisions, particles of this size behave differently depending on their shape.

For example, nanoparticles with crystal facets transfer energy well when they crash into each other, making them an ideal component of materials designed to harvest energy. When it comes to energy transport, these particles adhere to scientific norms that govern macroscopic linear systems -- including chains of equal-sized masses with springs in between them -- that are visible to the naked eye.

In contrast, nanoparticles that are rounder in shape, with amorphous surfaces, adhere to nonlinear force laws. This, in turn, means they may be especially useful for shock mitigation. When two spherical nanoparticles collide, energy dissipates around the initial point of contact on each one instead of propagating all the way through both. The scientists report that at crash velocities of about 30 meters per second, atoms within each particle shift only near the initial point of contact.

Nanoparticles with sharp edges are less predictable: According to the new study, their behavior varies depending on sharpness of the edges when it comes to transporting energy.

Designing a new generation of materials

"From a very broad perspective, the kind of work we're doing has very exciting prospects," Sen says. "It gives engineers fundamental information about nanoparticles that they didn't have before. If you're designing a new type of nanoparticle, you can now think about doing it in a way that takes into account what happens when you have very small nanoparticles interacting with each other."

Though many scientists are working with nanotechnology, the way the tiniest of nanoparticles behave when they crash into each other is largely an open question, Takato says.

"When you're designing a material, what size do you want the nanoparticle to be? How will you lay out the particles within the material? How compact do you want it to be? Our study can inform these decisions," Takato says.

Media Contact

Charlotte Hsu
chsu22@buffalo.edu
716-645-4655

 @UBNewsSource

http://www.buffalo.edu 

Charlotte Hsu | EurekAlert!

Further reports about: Crash energy transport nanoparticle

More articles from Physics and Astronomy:

nachricht Physics: Not everything is where it seems to be
15.10.2018 | Universität Innsbruck

nachricht Disrupting crystalline order to restore superfluidity
12.10.2018 | Universität Hamburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>