Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broadband enhancement relies on precise tilt

06.05.2020

Investigators develop a quantum photonics prototype using hyperbolic metamaterials tilted at a precise angle from an optical fiber

Quantum photonics involves a new type of technology that relies on photons, the elementary particle of light. These photons can potentially carry quantum bits of information over large distances. If the photon source could be placed on a single chip and made to produce photons at a high rate, this could enable high-speed quantum communication or information processing, which would be a major advance in information technologies.


Broadband enhancement of the on-chip single photon extraction via tilted hyperbolic metamaterials. A quantum emitter is positioned very close to a hyperbolic metamaterial, whose optical axis is tilted with respect to the end facet of nanofiber.

Credit: Lian Shen

In this week's issue of Applied Physics Reviews, from AIP Publishing, a simple on-chip photon source using a type of material known as a hyperbolic metamaterial is proposed. The investigators carried out calculations to show that a prototype using the hyperbolic metamaterial arranged in a precise way can overcome problems of low efficiency and allow for high repetition rates for on-chip photon sources.

Until recently, single-photon sources have usually been made from self-assembled quantum dots in semiconductors or from materials, like diamonds, with structural defects. It is difficult, however, to produce single photons at high rates from such materials. Some approaches to remedy this problem have been tried, but so far, the results suffer from a narrow bandwidth and low efficiency.

Another way to approach these problems is to use special materials, such as metamaterials, for the photon source. Metamaterials are stacks of metallic and dielectric layers, structured at a level much smaller than the wavelength of light in use. They exhibit unusual optical properties when formed into shapes, such as nanowires. Electrons flowing through the material set up a collective oscillation known as a surface plasmon, generating localized electromagnetic fields.

Hyperbolic metamaterials are highly anisotropic versions of these metamaterials. They manipulate light in a variety of ways. For example, they can shrink the wavelength of light and allow it to travel freely in one direction while stopping it in another.

The investigators propose a geometry for their on-chip photon source where a hyperbolic metamaterial is tilted at a precise angle with respect to the end facet of the nearby nanofiber used to transmit the emitted photons. By choosing the tilt angle carefully, light reflections are suppressed at the interface with the fiber.

Calculations by the group showed that this simple geometrical arrangement should overcome previous limitations with these materials.

Co-author Lian Shen said, "Our work represents a vital step toward the implementation of spectrally broad single photon sources with high repetition rates for on-chip quantum networks."

###

The article, "Broadband enhancement of on-chip single photon extraction via tilted hyperbolic metamaterials," is authored by Lian Shen, Xiao Lin, Mikhail Shalaginov, Tony Low, Xianmin Zhang, Baile Zhang and Hongsheng Chen. The article will appear in Applied Physics Reviews on May 5, 2020 (DOI: 10.1063/1.5141275). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5141275.

ABOUT THE JOURNAL

Applied Physics Reviews features articles on significant and current topics in experimental or theoretical research in applied physics, or in applications of physics to other branches of science and engineering. The journal publishes both original research on pioneering studies of broad interest to the applied physics community, and reviews on established or emerging areas of applied physics. See https://aip.scitation.org/journal/are.

Media Contact

Larry Frum
media@aip.org
301-209-3090

http://www.aip.org 

Larry Frum | EurekAlert!
Further information:
http://dx.doi.org/10.1063/1.5141275

More articles from Physics and Astronomy:

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

nachricht Rock 'n' control
09.07.2020 | University of Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Record efficiency for printed solar cells

09.07.2020 | Power and Electrical Engineering

Rock 'n' control

09.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>