Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic contamination similar to that of gemstones serves as a quantum information carrier

01.10.2018

Impurities in materials are responsible for the colours of gemstones or the performance of modern semiconductors. The same applies to quantum systems, although it has hardly been researched in this field. For the first time, Kaiserslautern researchers were able to implant individual impurities formed by caesium atoms into an ultracold quantum gas of rubidium atoms in a controlled manner. They observed how the impurities exchange quantum mechanical angular momentum (spin) with the gas. They also demonstrated that caesium atoms can store quantum information. This has not been possible so far. The study was published in the renowned journal “Physical Review Letters.”

Individual atomic impurities are also present in other materials, for example in gemstones. They are responsible for various effects in quantum physics and are therefore interesting for experiments. At the TUK, physicists led by Professor Dr. Artur Widera and his doctoral student Felix Schmidt have now observed for the first time how such impurities behave in a Bose-Einstein condensate of rubidium atoms.


The physicists Professor Artur Widera (right) and his doctoral student Felix Schmidt are researching quantum systems.

Koziel/TUK

“In physics, this refers to a state of matter that is comparable with liquid and gaseous states. However, such a condensate is a perfect quantum mechanical state that behaves like a wave,” says Professor Widera, who heads the Individual Quantum Systems group.

For physicists, Bose-Einstein condensates are a popular model for investigating quantum effects - similar to the fruit fly Drosophila which is used in biology and medicine as a model organism to answer genetic questions.

In their current study, the Kaiserslautern physicists have investigated such a contamination in a quantum gas. They cool it down to temperatures close to the absolute zero point of -273.15° Celsius. “In this way, we can control a quantum mechanical system,” says first author Felix Schmidt. The researchers used caesium atoms as an impurity. Five to ten caesium atoms have been immersed in a Bose-Einstein condensate of around 10,000 rubidium atoms.

“The system can be examined under a microscope. The ultracold gas has a size of ten micrometres,” continues the doctoral student. The researchers have thus localized individual impurities and observed the change in their electronic structure, the so-called spin, through interaction with the quantum gas. “So far it has not been possible to observe individual atoms in such a gas. We are pleased that we succeeded in the experiment,” says Schmidt.

The researchers have also investigated whether caesium atoms can be used as information carriers and simultaneously cooled in quantum gas. “For atoms to store information, their electronic state must be preserved,” explains Widera.

“However, since the condensate interacts with the other atoms, there is a risk that they may lose sensitive information as a result of impact.” The researchers have now succeeded for the first time in cooling the impurity atoms in the quantum gas without losing quantum information.

“The model of individual impurities in an ultracold gas realizes a paradigm of quantum physics,” says Professor Widera. “It can serve as a starting point for a variety of other quantum experiments.” In particular, the findings of the Kaiserslautern scientists help to better understand what is happening at the quantum level.

This could play a role in the future, for example, in understanding superconductors and developing new materials. They could transport electricity over long distances without great energy loss at normal ambient temperatures. So far, this has only been possible at temperatures well below freezing point.

The study was published in the renowned journal Physical Review Letters: “Quantum spin dynamics of individual neutral impurities coupled to a Bose-Einstein condensate.” Felix Schmidt, Daniel Mayer, Quentin Bouton, Daniel Adam, Tobias Lausch, Nicolas Spethmann, and Artur Widera. Phys. Rev. Lett. 121, 130403

DOI: 10.1103/PhysRevLett.121.130403

Widera and his doctoral student Felix Schmidt are researching quantum systems. The physicists at the State Research Centre for Optics and Materials Science (OPTIMAS) also work interdisciplinary with working groups from the area of chemistry, mechanical engineering and process engineering as well as electrical engineering and information technology in order to transfer basic research into applications.

Wissenschaftliche Ansprechpartner:

Prof Dr Artur Widera
Department for Individual Quantum Systems
E-mail: widera(at)physik.uni-kl.de
Phone: +49(0)631 205-4130

Felix Schmidt
E-Mail: schmidtf(at)physik.uni-kl.de
Phone: +49(0)631 205-5272

Originalpublikation:

Quantum spin dynamics of individual neutral impurities coupled to a Bose-Einstein condensate. Felix Schmidt, Daniel Mayer, Quentin Bouton, Daniel Adam, Tobias Lausch, Nicolas Spethmann, and Artur Widera. Phys. Rev. Lett. 121, 130403
DOI: 10.1103/PhysRevLett.121.130403

Melanie Löw | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Physics and Astronomy:

nachricht Extremely close look at electron advances frontiers in particle physics
18.10.2018 | National Science Foundation

nachricht Blue phosphorus -- mapped and measured for the first time
16.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>