Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All-clear in space – Cuddling inside a nebula does not have to end in a catastrophe

24.06.2020

Contrary to results published previously, a careful re-analysis of the merging stars inside the planetary nebula Henize 2-428 shows that no supernova explosion is to fear. The merger of the two stars could instead give rise to a new star with an exotic atmospheric composition. The results of the study were published in the journal Astronomy & Astrophysics by an international team of astronomers led by Dr. Nicole Reindl, open-topic research fellow at the Institute of Physics and Astronomy of the University of Potsdam.

Supernova explosions are catastrophic explosions of stars in space, were different types are distinguished. A supernova type Ia or thermonuclear supernova occurs when a white dwarf star acquires extra mass — either by accretion from a stellar companion or by merging with another white dwarf.


An artist’s impression of the two merging central stars inside the planetary nebula Henize 2-428

Nicole Reindl

Because the explosion always releases the same amount of energy, type Ia supernovae are often used to measure astronomical distances. However, the nature of the progenitor systems that leads to this kind of explosion is still elusive.

Consequently, large observational and theoretical effort is put into finding such systems.
The only definite candidate for a progenitor system of a supernova type Ia scenario was the nucleus of the planetary nebula Henize 2-428 in the constellation Aquila, consisting of a close pair of white dwarf stars that orbit each other in close distance every four hours.

The two stars are actually so close that they even share a common envelope. Back in 2015, an article published in the renowned journal Nature claimed a total mass of the two stars of about 1.8 times that of the Sun, which is high enough for triggering a supernova type Ia explosion.

A careful re-analysis of this system performed by an international team of astronomers led by Dr. Nicole Reindl now comes to a completely different conclusion. In their article, which appears as Highlight in the journal Astronomy & Astrophysics, they show that the total mass of the system has been significantly overestimated and that the merger of the two stars will not produce a supernova explosion.

“One has to be very careful when analyzing the observations of central stars of planetary nebula” stresses Reindl, “not only the material from the surrounding nebula can lead to a contamination of the measurements, but also the gas that is between us and the stars”.

Planetary nebulae are the expanding, glowing shells of ionized gas ejected from stars late in their lives. By modeling these nebula contributions and interstellar gases, the team could show that the total mass of the system only slightly exceeds one solar mass. This is far too low to produce a supernova Ia explosion and, therefore, the race to find a definite supernova type Ia progenitor system is re-opened.

The authors suggest that the merger of the two stars will instead give rise to a new star with an exotic atmospheric composition. “Every so often such exotic stars are found amongst white dwarf stars, and they are not very well understood”, explains Reindl. The team hopes now that their work will push forward investigation on these stars as well.


Publication:
N. Reindl, V. Schaffenroth, M. M. Miller Bertolami, S. Geier, N. L. Finch, M. A. Barstow Finch, S. L. Casewell and S. Taubenberger (2020) An in-depth reanalysis of the alleged type Ia supernova progenitor Henize 2-428, Astronomy & Astrophysics.
www.aanda.org/10.1051/0004-6361/202038117

Image:
An artist’s impression of the two merging central stars inside the planetary nebula Henize 2-428. Image Credit: Nicole Reindl

Kontakt:
Dr. Nicole Reindl, Institute of Physics and Astronomy
E-Mail: nreindl@gmail.com
Phone: +49 176 775 10 763

Medieninformation 24-06-2020 / Nr. XXX
Dr. Stefanie Mikulla

Universität Potsdam
Referat Presse- und Öffentlichkeitsarbeit
Am Neuen Palais 10
14469 Potsdam
Tel.: +49 331 977-1474
Fax: +49 331 977-1130
E-Mail: presse@uni-potsdam.de
Internet: www.uni-potsdam.de/presse

Wissenschaftliche Ansprechpartner:

Dr. Nicole Reindl, Institute of Physics and Astronomy
E-Mail: nreindl@gmail.com
Phone: +49 176 775 10 763

Originalpublikation:

N. Reindl, V. Schaffenroth, M. M. Miller Bertolami, S. Geier, N. L. Finch, M. A. Barstow Finch, S. L. Casewell and S. Taubenberger (2020) An in-depth reanalysis of the alleged type Ia supernova progenitor Henize 2-428, Astronomy & Astrophysics.

www.aanda.org/10.1051/0004-6361/202038117  

Dr. Stefanie Mikulla | Universität Potsdam

More articles from Physics and Astronomy:

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

nachricht Rock 'n' control
09.07.2020 | University of Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Record efficiency for printed solar cells

09.07.2020 | Power and Electrical Engineering

Rock 'n' control

09.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>