Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A one-way street for light

15.11.2019

Light can be directed in different directions, usually also back the same way. Physicists from the University of Bonn and the University of Cologne have however succeeded in creating a new one-way street for light. They cool photons down to a Bose-Einstein condensate, which causes the light to collect in optical “valleys” from which it can no longer return. The findings from basic research could also be of interest for the quantum communication of the future. The renowned journal "Science" now presents the results.

A light beam is usually divided by being directed onto a partially reflecting mirror: Part of the light is then reflected back to create the mirror image. The rest passes through the mirror.


At the measuring table: (from left) Frank Vewinger, Martin Weitz, David Dung, Erik Busley and Christian Kurtscheid in the laboratory of the Institute of Applied Physics at the University of Bonn.

(c) Photo: Volker Lannert/Uni Bonn

"However, this process can be turned around if the experimental set-up is reversed," says Prof. Dr. Martin Weitz from the Institute of Applied Physics at the University of Bonn. If the reflected light and the part of the light passing through the mirror are sent in the opposite direction, the original light beam can be reconstructed.

The physicist investigates exotic optical quantum states of light. Together with his team and Prof. Dr. Achim Rosch from the Institute for Theoretical Physics at the University of Cologne, Weitz was looking for a new method to generate optical one-way streets by cooling the light particles (photons):

As a result of the smaller energy of the photons, the light should collect in various valleys and thereby be irreversibly divided. The physicists used a Bose-Einstein condensate made of photons for this purpose, with which Weitz made a name for himself in 2010 because he was the first to create such a "super-photon".

A beam of light is thrown back and forth between two mirrors. During this process, the photons collide with dye molecules located between the reflecting surfaces.

The dye molecules "swallow" the photons and then spit them out again. "The photons acquire the temperature of the dye solution," says Weitz. "In the course of this, they cool down to room temperature without getting lost."

By irradiating the dye solution with a laser, the physicists increase the number of photons between the mirrors. The strong concentration of the light particles combined with simultaneous cooling causes the individual photons to fuse to form a "super photon", also known as Bose-Einstein condensate.

Two optical valleys "catch" the light

The current experiment by the team of physicists from Bonn and Cologne worked in accordance with this principle. However, one of the two mirrors was not completely flat, but had two small optical valleys. When the light beam enters one of the indents, the distance, and therefore the wavelength, becomes slightly longer. The photons then have a lower energy. These light particles are "cooled" by the dye molecules and then pass into a low-energy state in the valleys.

However, the photons in the indents do not behave like marbles rolling over a corrugated sheet. Marbles roll into the valleys of the corrugated sheet and remain there, separated by the "peaks". "In our experiment, the two valleys are so close together that a tunnel coupling occurs," reports lead author Christian Kurtscheid from the Weitz team. It is therefore no longer possible to determine which photons are in which valley.

"The photons are held in the two valleys and enter the lowest energy state of the system," explains Weitz. "This irreversibly splits the light as if it were passing through an intersection at the end of a one-way street, while the light waves remain in lockstep in different indents."

The scientists hope that this experimental arrangement will make it possible to produce even more complex quantum states that allow the generation of interlaced photonic multi-particle states.

"Perhaps quantum computers might one day use this method to communicate with each other and form a kind of quantum Internet," says Weitz with a view towards the future.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Martin Weitz
Institute of Applied Physics
University of Bonn
Tel: +49-(0)228-73-4837 or 73-4836
E-mail: Martin.Weitz@uni-bonn.de

Christian Kurtscheid
Institute of Applied Physics
University of Bonn
Tel. +49-(0)-228-73-60458 or 73-3455
E-mail: kurtscheid@iap.uni-bonn.de

Originalpublikation:

Christian Kurtscheid, David Dung, Erik Busley, Frank Vewinger, Achim Rosch, and Martin Weitz: Thermally Condensing Photons into a Coherently Split State of Light, Science, DOI: 10.1126/science.aay1334

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Physics and Astronomy:

nachricht Supporting structures of wind turbines contribute to wind farm blockage effect
13.12.2019 | American Institute of Physics

nachricht Chinese team makes nanoscopy breakthrough
13.12.2019 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>