Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A momentous view on the birth of photoelectrons

06.12.2019

The first sub-femtosecond study of the linear photon momentum transfer during an ionisation process provides unprecedented insight into the birth of photoelectrons

The interaction between light and matter is the basis of both many fundamental phenomena and various practical technologies.


Reconstructed 3D photoelectron momentum distribution, together with a sketch of the polarisation ellipse and the beam direction. (Adapted from Willenberg et al., Nat. Commun. 10, 5548; 2019)

Credit: ETH Zurich, D-PHYS, Keller group

Most famously, in the photoelectric effect, electrons are emitted from a material that is exposed to light of suitable energy.

For long, the origin of the phenomenon remained a riddle, and only with the advent of quantum theory -- and thanks to the genius of Albert Einstein -- was the effect fully understood. Einstein received the 1921 Nobel Prize in Physics for his discovery of the underlying laws, and since then the effect has been harnessed in applications ranging from spectroscopy to night-vision devices.

In some important cases, the key principle is the transfer not of energy but of linear momentum -- or, impulse -- from photons to electrons. This is the case, for instance, when laser light is used to cool microscopic and macroscopic objects, or to understand the phenomenon of radiation pressure.

Despite the fundamental importance of momentum transfer, the precise details of how light passes its impulse on to matter are still not fully understood. One reason is that the transferred impulse changes during an optical cycle on extremely fast, sub-femtosecond timescales.

So far, studies revealed mainly information on time-averaged behaviour, missing time-dependent aspects of the linear-momentum transfer during photoionisation. This gap has now been filled by the group of Ursula Keller at the Institute for Quantum Electronics, as they report in a paper published today in Nature Communications.

They looked at the case of high laser intensities, where multiple photons are involved in the ionisation process, and investigated how much momentum is transferred in the direction of laser propagation.

To achieve sufficient time resolution, they employed the so-called attoclock technique, which has been developed and refined in the Keller lab over the past decade. In this method, attosecond time resolution is achieved without having to produce attosecond laser pulses.

Instead, information about the rotating laser-field vector in close to circular polarised light is used to measure time relative to the ionisation event with attosecond precision. Very similar to the hand of a clock -- just now this clock hand is rotating through a full circle within one optical cycle of 11.3-fs duration.

With this versatile tool at hand, the ETH physicists were able to determine how much linear momentum electrons gained depending on when the photoelectrons were 'born'.

They found that the amount of momentum transferred in the propagation direction of the laser does indeed depend on when during the oscillation cycle of the laser the electron is 'freed' from the matter, in their case xenon atoms.

This means that at least for the scenario they explored, the time-averaged radiation pressure picture is not applicable. Intriguingly, they can reproduce the observed behaviour almost fully within a classical model, whereas many scenarios of light-matter interaction, such as Compton scattering, can only be explained within a quantum mechanical model.

The classical model had to be extended though, to take into account the interaction between the outgoing photoelectron and the residual xenon ion.

This interaction, they show in their experiments, induces an additional attosecond delay in the timing of the linear momentum transfer compared to the theoretical prediction for a free electron born during the pulse.

Whether such delays are a general property of photoionisation or if they apply only for the sort of scenarios investigated in the present study remains open for now.

What is clear, however, is that with this first study of linear momentum transfer during ionisation on the natural timescale of the process, the Keller group opened up a new exciting route to explore the very fundamental nature of light-matter interactions -- thus making good on a central promise of attosecond science.

Media Contact

Andreas Trabesinger
trabi@ethz.ch
079-128-9860

 @ETH_physics

https://www.phys.ethz.ch/ 

Andreas Trabesinger | EurekAlert!
Further information:
https://www.phys.ethz.ch/news-and-events/d-phys-news/2019/12/a-momentous-view-on-the-birth-of-photoelectrons.html
http://dx.doi.org/10.1038/s41467-019-13409-6

More articles from Physics and Astronomy:

nachricht Colloidal Quantum Dot Photodetectors can now see further than before
21.01.2020 | ICFO-The Institute of Photonic Sciences

nachricht Compact broadband acoustic absorber with coherently coupled weak resonances
21.01.2020 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

New self-assembled monolayer is resistant to air

22.01.2020 | Life Sciences

Ultrafast camera takes 1 trillion frames per second of transparent objects and phenomena

22.01.2020 | Power and Electrical Engineering

Mosquitoes are drawn to flowers as much as people -- and now scientists know why

22.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>