Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fast all-visible-light molecular switch with 100 nm band separation

03.06.2019

De novo design allows for breakthrough in molecular photocontrol

A consortium of scientists from the Medical Imaging Center (University Medical Center Groningen), Van 't Hoff Institute for Molecular Sciences (University of Amsterdam), Palacky University in Olomouc, the University of Nantes, Stratingh Institute for Chemistry (University of Groningen) and the European Laboratory for Non-Linear Spectroscopy in Florence have developed an entirely new class of molecular photoswitches that meet many of the 'holy grail' requirements so far thought to be impossible to achieve. The results have been published in Nature Communications on 3 June.


This is an illustration depicting how ITI is switched between states.

Credit: Wiktor Szymanski, University of Groningen Medical Center.


The optical equipment that was used to make the first discovery that ITI in fact works.

Credit: Wybren Jan Buma, University of Amsterdam

In our macroscopic world, we are used to being able to switch a device on or off depending on whether we need it or not. Such control is not only useful in the macroscopic world but also one of the holy grails at the molecular scale.

Molecular photoswitches are in this respect of particular interest as they allow for a non-invasive and localized means to activate, for example, a drug where and when it is needed. Such switches exist but are far from ideal as they require harmful ultraviolet light for their operation rather than harmless visible light, which is a show-stopper from a medical settings point of view.

Furthermore, they cannot exclusively be switched from one state to the other, and normally do not function under physiological conditions of the human body. Absorption bands describe which wavelengths of light are needed for switching. When the absorption bands of the 'on' and 'off' state overlap, switching between the two states requires light of the same wavelength, which is very ineffective.

If the absorption bands are, however, well separated switching between the 'on' and 'off' state can be done with high specificity and efficiency with light of different wavelengths. Molecular switches that would meet such requirements are thus highly sought after, but up till now, nobody has been able to come up with a suitable design.

Best of both worlds

Thioindigo and azobenzene are two chemical motifs that are extensively being used in molecular switches albeit that they suffer from the previously mentioned drawbacks. Dr Wiktor Szymanski at the University Medical Center Groningen realized that a fusion of these two should also be able to function as a photoswitch, and -similar to crossbreeding- would very likely have improved properties compared to its 'parents'.

'However, the initial results were very disappointing', says Mark Hoorens, the PhD student at the UMCG who synthesized the iminothioindoxyl (ITI) compound and tried to switch it. 'We didn't see any change in the absorption spectrum when we irradiated it, nothing seemed to happen. We therefore lost interest in this compound and went on with other research.'

Looking faster

At the 2017 International Symposium on Photopharmacology organized in Groningen, the group discussed their results with scientists of the Molecular Photonics group at the University of Amsterdam. Based on that discussion it was concluded that it might be worthwhile to repeat the irradiation experiments using the facilities at the University of Amsterdam which have a better time resolution. The new experiment produced a surprising result. 'At first, we did not believe our eyes' say Mark Hoorens and Michiel Hilbers (UvA).

'We saw a completely separated absorption band appear 100 nm to the red of the steady-state absorption band of ITI with a lifetime of about 10 to 20 milliseconds and in the first instance even suspected that we were looking at contamination in the sample'. One of its 'parents' absorbs in the UV region and has band separation, while the other parent absorbs in the visible light region but does not have good band separation.

The new switch has the best of both. Such properties have never before been observed in a photoswitch. Follow-up experiments confirmed that ITI is indeed the fully-visible-light switch the scientists were looking for. Experiments on a femto- and picosecond timescale performed in the laboratories of dr. Mariangela Di Donato at the European Laboratory of Non-Linear Spectroscopy allowed for further mechanistic studies. Mariangela says: 'From these studies, it became clear that ITI switches on an ultrafast timescale of a few hundreds of femtoseconds, similar to how fast the visual pigment in our eyes is switched when light falls on it'.

Quantum calculations

The final confirmation was provided by quantum chemical calculations performed by Dr Adèle Laurent (University of Nantes) and dr. Miroslav Medved' (Palacky University in Olomouc). These calculations predicted absorption maxima of the two photo-isomers that were very similar to those observed experimentally, but also a barrier for switching back to the original form that fitted excellently the observed lifetime. 'In the first instance, we were quite puzzled by this gigantic 100 nm band separation', say Laurent and Medved', 'but our calculations now provide a logical explanation for this. What is even better is that they allow us to predict how ITI can be modified to meet the specific requirements of its users'.

ITI at work

Mark Hoorens has by now synthesized several varieties that have been further characterized in Amsterdam, Florence, Nantes and Olomouc. From these studies, it has become clear that ITI is an incredibly versatile switch that can be operated under a wide variety of experimental conditions including, importantly, biological ones, and with properties that are relatively easy to tune. As the consortium puts it: 'the future is bright - and in the visible range'!

###

Reference

Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range; Mark W.H. Hoorens, Miroslav Medved', Adèle D. Laurent, Mariangela Di Donato, Samuele Fanetti, Laura Slappendel, Michiel Hilbers, Ben L. Feringa, Wybren Jan Buma & Wiktor Szymanski; Nature Communications, 3 June 2019

Joost Wessels | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-019-10251-8

More articles from Physics and Astronomy:

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Better thermal conductivity by adjusting the arrangement of atoms
19.07.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>