Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

12,000 holes per second with 1 µm diameter

13.03.2019

A new generation of ultrafast process technology is on the market. Higher average laser power and greater pulse energy promise higher throughput and efficiency. When processing microfilters, for example, this makes it possible to drill hole sizes down to below one micrometer much more quickly. When scaling the processes, there are some non-trivial interaction mechanisms to contend with, which were one of the topics of the “5th UKP-Workshop: Ultrafast Laser Technology“ in Aachen.

Ultrafast lasers with pulse durations in the picosecond and femtosecond range have experienced a major boom over the past few years. Several innovations in process technology permit ultrafast laser processes to be used in industrial fields such as consumer electronics. Multi-100-W ultrafast lasers are now available, which allow significant scaling of many processes.


High power rates and small spacings between the holes require targeted thermal process management also in USP multibeam processes. This can be achieved with optimized process control.

© Fraunhofer ILT, Aachen, Germany


Simulation of the thermal propagation during USP multibeam processing.

© Fraunhofer ILT, Aachen, Germany

The current challenge is to develop new beam guidance and process concepts to distribute the large average outputs over the workpiece surface. It is the process technology that currently poses the main limitation:

Laser systems with high repetition rates require scanners with speeds up to 1,000 m/s, and laser systems with high pulse energy require new beam splitting and shaping concepts to distribute the energy.

“It’s all about how we apply the power,” said Dr. Arnold Gillner, organizer of the “UKP-Workshop: Ultrafast Laser Technology” in Aachen, describing the issue last year.

Multibeam concept: Achieving greater throughput with scanner and diffractive optics

One option for making better use of pulse energy is the multibeam concept, which involves splitting a laser beam into many beamlets. At the Fraunhofer Institute for Laser Technology ILT, a team has been working on this technology since 2012.

Since then, the experts have learned how to use diffractive optical elements (DOEs) for the targeted application of over 200 beamlets in micro- and nano-structuring. This allows them to obtain precise results in the sub-micrometer range.

For the DOE, they use a structured glass surface on which light waves are bent. The surface structure is etched into the glass with extreme precision using a wet chemical technique. As a result, the DOE’s static beam distribution is much more precise and resistant than the dynamic beam shaping approach based on liquid crystal modulators.

For efficient material processing, the laser beam is transformed by a DOE into a beam matrix with many parallel beamlets. Using a scanner system and f-theta optics, the parallel beamlets are then focused on the workpiece and can be moved simultaneously over the workpiece along all possible paths.

Drilling 12,000 precision holes per second

The multibeam technique proves its worth when drilling holes in metal films with thicknesses of 10 to 50 µm. Conventional methods such as etching require preparatory work and rework, which are no longer necessary with laser drilling. The multibeam technique works for periodic structures and requires smooth, flat surfaces.

In micro-drilling, the team from Fraunhofer ILT has achieved extraordinarily high precision. With their new multibeam system, the experts in Aachen are able to create precision holes with diameters of less than one micrometer.

The spacing between holes can be reduced to a few micrometers. To increase throughput, they work with a DOE that generates over 200 beamlets. In this way, they have already managed to produce over 12,000 holes per second with an outlet diameter of under 1 µm.

The current goal of the researchers is to further increase the drill rate without losing any of the quality. In the near future, drill rates of 20,000 holes per second are foreseeable.

Where is the catch?

In addition to the question as to the right process technology, another problem reared its head over the past few years: The “cold” ablation of ultrafast lasers, whereby hardly any heat is generated in the material for single-beam processes, is a good deal trickier to execute with hugely parallelized processes.

At high repetition rates, high pulse energies and short distances between holes, it becomes necessary to employ customized thermal management in order to optimize the processing strategy, as otherwise process-related zones of thermal damage form.

The scientists in Aachen have been tackling this issue with success since 2012 and have defined thermal management for multibeam processing as a key focus area for their research.

Various teams worldwide have investigated the problem by means of experiments and simulations and have developed different approaches to solving it. The Fraunhofer ILT researchers in Aachen have optimized the processes for single-hole drilling and also for multibeam processing. In these processes, the laser power deposited must not exceed a maximum value dependent on the material and the target geometry.

The outcome is a patented technology that is already capable of drilling over 12,000 holes per second with diameters of a few micrometers and all the way down into the sub-micrometer range.

Thus, metallic surface filters with which certain particles can be selectively separated from each other can be economically produced, for example water filters for multi-resistant germs or for microplastics as well as many other applications in biotechnology.

The use of microfilters is also interesting for the food industry, for example in the field of sterile filtration, i.e. when all kinds of microorganisms have to be retained. Other possible applications include the filtration of fine dust in PM classes from 10 to 1 or the mechanical separation of white and red blood cells in medical technology, to name just a few applications for microfilters.

For more information on the latest trends and for the opportunity to talk to the experts from industry and research, we invite you to visit the “5th UKP-Workshop: Ultrafast Laser Technology” from April 10 to 11, 2019 in Aachen, at which around 200 participants are expected. You can register as of immediately at: www.ultrakurzpulslaser.de/en.html

Wissenschaftliche Ansprechpartner:

Dipl.-Phys. Martin Reininghaus
Group Manager Micro- and Nano-Structuring
Telephone +49 241 8906-627
martin.reininghaus@ilt.fraunhofer.de

Thilo Barthels M.Sc.
Group Micro- and Nano-Structuring
Telephone +49 241 8906-207
thilo.bartels@ilt.fraunhofer.de

Weitere Informationen:

https://www.ilt.fraunhofer.de/en.html
https://www.youtube.com/watch?v=zk2XP3cgl-Q

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Physics and Astronomy:

nachricht Cherned up to the maximum
10.07.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>