Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Underwater Snail-o-Bot gets kick from light


Researchers at the Max Planck Institute for Intelligent Systems in Stuttgart in cooperation with Tampere University in Finland developed a gel-like robot inspired by sea slugs and snails they are able to steer with light. Much like the soft body of these aquatic invertebrates, the bioinspired robot is able to deform easily inside water when exposed to this energy source. Due to specifically aligned molecules of liquid crystal gels – its building material – and illumination of specific parts of the robot, it is able to crawl, walk, jump, and swim inside water.

Making an untethered soft construct that can easily change its shape and move around freely inside water is a challenging task in the research field of robotics. The majority of the known soft materials are difficult to deform in a controlled manner and to actuate efficiently due to high thermal dissipation and drag force in water.

Snail-o-Bot can move in many different ways

Hamed Shahsavan

A team of researchers in the Physical Intelligence Department at the Max-Planck-Institute for Intelligent Systems (MPI-IS), in collaboration with Prof. Arri Priimagi’s team at Tampere University aimed to solve this challenge.

In the end, they found a suitable material: photo-responsive liquid crystal gels (LCGs). Such gels have never been used before in robotics, specifically in soft-bodied robotics for potential medical applications.

Both teams looked to nature and the blueprints it provides. “We studied different animals that can easily move in water,” explains Hamed Shahsavan, who is an NSERC postdoctoral researcher in the Physical Intelligence Department at the MPI-IS.

“The ones that performed really well were ones that had a very soft and gel-like body. Our hero was the Spanish Dancer that can both move on the sea bed and swim away from it. But also other soft-bodied invertebrates inspired us, such as snails.”

A gel-like body as the main requirement – soon LCGs were agreed on, as they come with several advantages: Firstly, they react to light. “By using light, we can manipulate our untethered robot without any rigid and bulky on-board powering, sensing, and actuation components. Even with little energy or temperature, we can undergo a big shape change and perform different modes of locomotion,” Shahsavan continues.

The second advantage is that by arranging the gel molecules in a certain pattern, the overall construction of a few millimeters can change its shape when light illuminates specific parts of the robot (because of this targeted alignment of the gel molecules, the researchers speak of “programmable shape change”).

Once the light-responsive, floppy rubber-band-like material is exposed to light, it can perform rapid and reversible shape changes: it can crawl, walk, jump, and swim. This is because LCGs reduce their density when exposed to light by 7-8%, as light makes them lighter in water.

Due to the buoyancy of the illuminated parts, and with the light being turned on and off at specific intervals, the robot is actuated photothermally (see figure 1 to 3 below and watch the video).

Watch out, Snail-o-Bot is on the move!

The researchers published their work “Bioinspired underwater locomotion of light-driven liquid crystal gels” in the Proceedings of the National Academy of Sciences PNAS in February 2020. “We showed that we were able to build a robot that could do different types of motion in a fluidic environment,” says Shahsavan, the first author of the paper.

“Our construction is very fast, it has low energy requirements for its actuation – 20 to 30 times less power is needed to make the same shape change compared to non-gel constructs –, and we can pre-program the shape-change due to molecular alignment. Through this, we present a solution to remotely actuate and move soft materials under water in a fast, efficient, and controlled manner. We hope to inspire other roboticists who struggle to design untethered soft robots that are able to move freely in a fluidic environment.”

Shahsavan was inspired by the evolutionary perfection of natural organisms. In the Physical Intelligence Department, there is a strong focus on a diverse range of nature-inspired robots for potential biomedical applications, such as robots steered by chemical reactions, ultrasound, magnetic fields, and now also by light.

“We believe that soft-bodied robots that are able to operate in fluidic conditions and soft materials with shape-changing abilities will play a pivotal role in future medical applications and bioengineering”, says Metin Sitti, who is the Director of the Physical Intelligence Department. “We here in Stuttgart try to push the boundaries of this research field forward every day.”

While the construction of the LCG-based materials was conducted in Stuttgart, Germany, their experimental tests were conducted in Prof. Arri Priimagi’s lab, in Tampere University, Finland, in collaboration with Dr. Hao Zeng. “The extensive knowledge of Prof. Arri Priimagi’s team in light-fueled soft robots and their state-of-the-art optics and photonics facilities expedited this research,” says Shahsavan.

After several months of cooperation, their idea was put into practice: finding a material for a robot that is soft enough to work inside the body without hurting it. “In the future, we are trying to actuate this material with stimulus other than light, as it cannot penetrate through the human body,” Shahsavan concludes. “We hope that one day, we will be able to make our soft construction so small we can move and steer it with NIR light, acoustic waves, electric, or magnetic fields through the body.”


Weitere Informationen:

Linda Behringer | Max-Planck-Institut für Intelligente Systeme

More articles from Health and Medicine:

nachricht New 3D cultured cells mimic the progress of NASH
02.04.2020 | Tokyo University of Agriculture and Technology

nachricht Geneticists are bringing personal medicine closer to recently admixed individuals
02.04.2020 | Estonian Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Latest News

TU Dresden chemists develop noble metal aerogels for electrochemical hydrogen production and other applications

06.04.2020 | Life Sciences

Lade-PV Project Begins: Vehicle-integrated PV for Electrical Commercial Vehicles

06.04.2020 | Power and Electrical Engineering

Lack of Knowledge and Uncertainty about Algorithms in Online Services

06.04.2020 | Social Sciences

Science & Research
Overview of more VideoLinks >>>