Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chlorine dioxide gas kills dangerous biological contaminants

13.09.2002


The same sanitizing agent used to rid federal office buildings of anthrax – chlorine dioxide gas – can effectively eliminate deadly bacteria from apples and other fruits and vegetables, according to Purdue University researchers.



Scientists at Purdue began experiments using the gas to kill pathogens found on food long before anthrax was detected in mail sent to offices in New York and Washington, D.C., shortly after the terrorist attacks one year ago. The latest university test measured how effectively different potencies of chlorine dioxide (ClO2) gas used over various periods of time could kill Listeria monocytogenes cells on apples.

Results of the study, published in the September issue of Food Microbiology, demonstrated that the vapor was able to eradicate all of the contaminant on the fruit’s skin and significantly reduce the bacteria in the stem cavity and the calyx, said Richard Linton, director of Purdue’s Center for Food Safety Engineering and senior author. The calyx is the apple’s bottom, directly opposite from the stem cavity.


"We see more and more cases of food-borne diseases associated with fruits and vegetables," Linton said. "Some of this is because we encourage people, especially children and the elderly, to eat more and more of these types of foods for added health benefits. Yet these are two of the groups most susceptible to bacteria on food.

"Just 10 to 100 cells of Listeria on a piece of food can cause illness, and it’s possible for 1,000 to 10,000 cells to be on a piece of fruit. We need to develop ways to make food safer; traditional sanitation methods to remove pathogens are not effective enough to meet these new standards."

Although Listeria is relatively rare, it is considered the most deadly of the food-borne pathogens with a 20 percent fatality rate. The Clinton administration issued a "no tolerance" edict for Listeria in processed and ready-to-eat foods, such as hot dogs, and in dairy products. Under the policy, if one organism is found on a piece of food, the whole batch must be discarded and/or recalled from stores, warehouses and consumers’ shelves.

In addition, the FDA requires that sanitizers be effective enough to reduce organisms by at least 100,000 fold for Listeria, E. coli O157:H7, and Salmonella. In this study, Linton and his team achieved this level of Listeria elimination on the apple skin. Even on the stem cavity and calyx, the gas reduced the pathogen to a far greater extent than currently possible with other methods.

Another of the paper’s authors, Purdue food science researcher Yingchan Han, said one reason Listeria was used for the study is because it’s hardy; it can survive in refrigeration and is difficult to inactivate.

"Using the chlorine dioxide gas makes it possible to reduce the bacteria before the apples are cut up or mashed, a significant breakthrough for decontamination processes at small juice-producing companies," Han said. "They often don’t have the pasteurization heating systems necessary to meet USDA requirements for eliminating biological contaminants. These processors produce unpasteurized juice."

The chlorine dioxide process is "extraordinarily" better than other chemical methods of eliminating pathogens on produce, he said.

In the current research, the chlorine dioxide gas, used at a concentration of 4 mg per liter for 30 minutes, lowered the Listeria organisms a minimum of more than 1,000-fold for all three areas of apple tested. On the pulp, the average was more than a 100,000-fold reduction. These results support previous test results when Purdue scientists used the gas to sanitize green peppers.

Linton said the gas is so effective because it’s a strong oxidizing agent.

"Oxidizing agents disrupt the cell membrane, in this case of the bacteria, and this causes the cell to die," he said. "The chlorine dioxide gas is 1,000 times more effective than any other method tried so far for eliminating food-borne pathogens."

He and Han said they don’t believe this process will work well on already cut fruits and vegetables, and not at all for some varieties, such as lettuce, because it would likely affect the color. However, they will be testing the gas on other pathogens, such as Salmonella or E. coli, and on other foods. They also will be determining ways to make the process viable for use by commercial food producers.

The other scientist involved in this study was Jinhua Du.

The U.S. Department of Agriculture funded this research.

Purdue’s Center for Food Safety Engineering includes nearly 90 university scientists collaborating with USDA-Agricultural Research Service scientists to find faster, more exact ways to detect biological and chemical food-borne contaminants and to protect against them.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Sources:Richard Linton, (765) 494-6481, lintonr@foodsci.purdue.edu

Yingchang Han, (765) 494-8267, hany@foodsci.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu; http://www.agriculture.purdue.edu/AgComm/public/agnews/

Susan A. Steeves | EurekAlert!
Further information:
http://www.cdc.gov/ncidod/eid
http://www.arserrc.gov/www/
http://www.fsis.usda.gov/

More articles from Health and Medicine:

nachricht Mutations in donors' stem cells may cause problems for cancer patients
17.01.2020 | Washington University School of Medicine

nachricht Overactive brain waves trigger essential tremor
17.01.2020 | Columbia University Irving Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>