Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observing the internal 3D structure of the nipple to understand and fight breast cancer

09.04.2020

Nipple-sparing mastectomy is gaining ground as a treatment or preventive measure for breast cancer, given the understandable desire among patients to preserve natural appearance as much as possible. But the precise risk of preserving the nipple is not known as the cancer can spread along mammary ducts and to the nipple. A three-dimensional picture of the nipple structure can elucidate much more clearly than conventional reconstructions whether, where, and how much the cancer has spread to the nipple.

Conventional reconstruction from multiple two-dimensional tissue slices is a laborious process, is invasive, and does not give a clear understanding of the 3D structure of the nipple. Thus, the search for better imaging techniques continues.


Visualization of the lactiferous ducts in the nipple

Credit: Naoki Sunaguchi, Nagoya University


Three types 3D arrangement of the lactiferous ducts within the nipple

Credit: Naoki Sunaguchi, Nagoya University

Recently, Associate Professor Sunaguchi from Nagoya University and his colleagues saw the potential of X-ray dark-field computed tomography (or XDFI-CT) as a promising alternative to existing nipple-exploration methods, such as needle biopsy or ductoscopy.

XDFI-CT is a technique that can create a 3D rendering of a structure based on the distribution of its electron density and refractive index. Sunaguchi and team hypothesized that XDFI-CT could provide a 3D reconstruction of the human nipple that is at least as precise as images built from 2D slices, with the added benefit that the proposed approach leaves the nipple intact and therefore has wider applications.

"In this study, which has been published in Breast Cancer Research and Treatment, we examined 51 human nipples by XDFI-CT and visualized the 3D arrangements of the nipple ducts," explains Assoc. Prof. Sunaguchi. First, XDFI-CT was used to obtain 2D sections of the nipple so as to compare them with conventional tissue sections observed through light microscopy.

The results showed that the 2D CT slices were structurally compatible with the ones obtained through the conventional approach, giving a first demonstration of the capabilities of the method.

The CT-derived 2D slices were afterwards easily turned into full 3D renderings of the nipples, allowing the researchers to count the number of milk ducts and analyze the overall ductal structure, which varied from patient to patient. "Using 3D volume renderings of the 51 samples, we discovered three different types of duct arrangements," comments Assoc. Prof. Sunaguchi.

These three types of arrangements were "convergent," in which the ducts converged in a bowl shape centered at the tip of the nipple; "straight." where the ducts grew parallelly from the base to the tip; and "divergent," where the ducts diverged as they came closer to the tip.

The findings of this study also provided evidence for "sick lobe theory," which postulates that non-invasive ductal carcinoma (DCIS) begins in a single mammary lobe. In one particular sample, the researchers noted that three seemingly separate ducts with DCIS converged into a single opening near the tip of the nipple, implying that the three DCIS-ridden ducts were derived from the same cancerous mammary lobe.

Overall, the proposed strategy is very promising not only for analyzing the structure of the nipple but also for scanning other soft tissues or organs. Though there are some technical limitations to currently implementing XDFI-CT for diagnostic or exploratory purposes, the approach employed in the present study will certainly become very relevant once these hurdles are overcome.

###

The article, "Three-dimensional microanatomy of human nipple visualized by X-ray dark-field computed tomography," was published in the journal Breast Cancer Research and Treatment at DOI: 10.1007/s10549-020-05574-w.

Authors:

Naoki Sunaguchi1, Daisuke Shimao2, Tetsuya Yuasa3, Shu Ichihara4, Rieko Nishimura4, Risa Oshima2, Aya Watanabe1, Kikuko Niwa1 and Masami Ando5

Affiliations:

1Graduate School of Medicine, Nagoya University
2Department of Radiological Technology, Hokkaido University of Science
3Graduate School of Engineering and Science, Yamagata University
4Department of Pathology, Nagoya Medical Center
5Comprehensive Research Organization for Science and Society

For more information, contact:

Naoki Sunaguchi
Associate Professor, Graduate School of Medicine, Nagoya University
Email: sunaguchi@met.nagoya-u.ac.jp

About Nagoya University, Japan

Nagoya University has a history of about 150 years, with its roots in a temporary medical school and hospital established in 1871, and was formally instituted as the last Imperial University of Japan in 1939. Although modest in size compared to the largest universities in Japan, Nagoya University has been pursuing excellence since its founding. Six of the 18 Japanese Nobel Prize-winners since 2000 did all or part of their Nobel Prize-winning work at Nagoya University: four in Physics - Toshihide Maskawa and Makoto Kobayashi in 2008, and Isamu Akasaki and Hiroshi Amano in 2014; and two in Chemistry - Ryoji Noyori in 2001 and Osamu Shimomura in 2008. In mathematics, Shigefumi Mori did his Fields Medal-winning work at the University. A number of other important discoveries have also been made at the University, including the Okazaki DNA Fragments by Reiji and Tsuneko Okazaki in the 1960s; and depletion forces by Sho Asakura and Fumio Oosawa in 1954.

Naoki Sunaguchi | EurekAlert!
Further information:
http://en.nagoya-u.ac.jp/research/activities/news/2020/04/observing-the-internal-3d-structure-of-the-nipple-to-understand-and-fight-breast-cancer.html
http://dx.doi.org/10.1007/s10549-020-05574-w

Further reports about: 3D structure CANCER breast cancer computed tomography

More articles from Health and Medicine:

nachricht Scientists use nanoparticle-delivered gene therapy to inhibit blinding eye disease in rodents
07.07.2020 | Johns Hopkins Medicine

nachricht Nutrients in microalgae: an environmentally friendly alternative to fish
07.07.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>