Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than a nice coating

11.03.2020

Researchers at the Netherlands Institute for Neuroscience (NIN) have shown that specialized aggregates of molecules enwrapping nerve cells in the brain, the perineuronal nets, are crucial for regulating the connections between nerve cells that control motor memories. The discovery, published in the Proceedings of the National Academy of Sciences (PNAS), provide novel insight into how memories are formed and stored in the brain.

PERINEURONAL NETS INFLUENCE LEARNING


A perineuronal net (in green) with synapses embedded in it (in red)

Credit: Daniela Carulli

As the brain becomes older, the contacts between nerve cells (synapses) become less flexible, because they are encased in a meshwork of proteins and carbohydrates called a perineuronal net.

In the current study, researchers of the NIN (Verhaagen group and De Zeeuw group), in collaboration with the University of Turin and the University of Cambridge, induced a remarkable remodeling of cerebral synapses.

They improved the learning abilities of mice by using a powerful molecular tool to degrade the perineuronal nets. However, the capability of the mice to remember what they had learned was disturbed, indicating that the storage of acquired information requires intact perineuronal nets.

"This is the first time that it has been shown that changes in perineuronal nets are instrumental for motor learning and memory", says Daniela Carulli, researcher at the NIN and first author of this study.

CHANGING OF PERINEURONAL NETS

Children have the capability to learn much better than adults, from mastering a new language to playing a musical instrument. This is possible thanks to the flexibility (or "plasticity") of the connections between nerve cells in young brains.

Plasticity also allows a faster recovery from brain injury. "We discovered that perineuronal nets exert tight control on learning and memory in the adult brain", explains Carulli.

The researchers investigated a well-characterized type of learning, called eyeblink conditioning, that depends on the cerebellum, a brain region involved in motor functions.

"Our results indicate that perineuronal nets are diminished during the learning phase of eyeblink conditioning, but are restored at later stages, when memories are consolidated", Carulli continues.

Much still needs to be known as to how exactly perineuronal nets regulate plasticity, and, thereby cognitive functions. This is crucial in view of finding therapeutic strategies to tackle cognitive decline in the elderly or in patients with neurological disorders.

Media Contact

Daniela Carulli
d.carulli@nin.knaw.nl
31-205-665-512

http://www.nin.knaw.nl/ 

Daniela Carulli | EurekAlert!
Further information:
https://nin.nl/perineuronal-nets-influence-learning-and-memory/
http://dx.doi.org/10.1073/pnas.1916163117

More articles from Health and Medicine:

nachricht Protein shapes matter in Alzheimer's research
20.05.2020 | Michigan Technological University

nachricht Genetic tradeoffs do not stop evolution of antibiotic resistance
19.05.2020 | Universität zu Köln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>