Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epithelial cells adopt a new geometric shape so that tissue can curve

27.07.2018

Researchers from the Department of Cellular Biology at the University of Seville and Seville Institute of Biomedicine (IBiS) have shown that epithelial cells, which are those that cover the surfaces of many organs, adopt a new, previously undescribed geometric shape, the scutoid, so that tissue can curve. This finding, which has just been published in the review Nature Communications, allows organ to acquire very complex yet very stable shapes. The experts state that these new and beautiful shapes, scutoids, are the solution that nature has found to fold and curve the epithelia.

"The epithelial cells are the "construction blocks" with which an organism is formed. They are like 'pieces of Tente or Lego from which animals are made'. The epithelia form structures with multiple functions like forming a barrier against infections or absorbing nutrients.


These are scutoids.

Credit: University of Seville


These are scutoids.

Credit: University of Seville

In this way, during the development of an embryo, it changes from a simple structure formed from only a handful of cells to an animal with very complex organs. This process doesn't only occur because of the growth of the organism, but also because the epithelial cells start 'moving and joining together' to organise themselves correctly and give the organs their final shape", explains the University of Seville Biology faculty teacher Luisma Escudero.

Until now, these "blocks" were represented as being prism-shaped or being like truncated pyramids. However, upon examining epithelial curves in laboratory samples, the researchers found evidence that these real cells adopt other more complex shapes. "This is due to the fact that when tissue curves it tends to minimise energy, to be more stable, and for that reason our biophysical data indicates that what these cells do is adopt an scutoid shape", adds the researcher.

An scutoid is a solid geometric shape, like a cube or a pyramid, which had not been described until now. The epithelial cells adopt this form when the tissue curves, giving it a more stable structure. It could be said that they look like 'twisted prisms'.

From basic research to applied science

This discovery is included within basic science, at the interface between biology, mathematics and physics. However, this type of research is necessary for biomedicine. Specifically, this study opens the door to understanding how organs are formed during their development and what might be missing in some diseases in which this process is altered.

This research has been led by the Department of Cellular Biology at the Biology Faculty of the University of Seville and the Seville Institute of Biomedicine (IBiS), and the laboratory of Dr Javier Buceta from Lehigh University (USA). In addition, it benefitted from the collaboration of Alberto Márquez and Clara Grima of the 'Discrete Mathematics Research Group: Graph Theory and Computational Geometry" at the University of Seville, and experts from the Centro Andaluz de Biología del Desarrollo (Andalusian Centre for Developmental Biology).

Regarding the next step, the authors of the project state that they want "to find the molecules that cause the cells to adopt the escutoide shape. So, in the medium term, we will be able to begin to try to apply this knowledge to the creation of artificial tissue and organs in the laboratory, a great challenge for biology and biomedicine".

Media Contact

Luis Maria Escudero
lmescudero_ibis@us.es
34-655-772-838

 @unisevilla

http://www.us.es 

Luis Maria Escudero | EurekAlert!

More articles from Health and Medicine:

nachricht A step closer to cancer precision medicine
15.11.2019 | University of Helsinki

nachricht Can 'smart toilets' be the next health data wellspring?
14.11.2019 | Morgridge Institute for Research

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>