Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer research breakthrough as DNA behavior is uncovered in 3D models

11.05.2020

Multidisciplined team lead the first ever epigenetic study in 3D model human cancer cells

Scientists have used 3D models to break down the DNA behavior of cancer cells, in a breakthrough new study which could revolutionize treatment for the disease.


Scientists have used 3D models to break down the DNA behavior of cancer cells, in a breakthrough new study which could revolutionize treatment for the disease.

Credit: Dr Manel Esteller

In what is a first for science, a research team led by Dr Manel Esteller, Director of the Josep Carreras Leukaemia Research Institute (IJC), demonstrated how 3D models (known as organoids) can now be used to develop a characterization of the DNA make-up - or the epigenetic fingerprint - of human cancer.

Pubished in Epigenetics, the research validates the use of these 3D samples for cancer research that could deliver new oncology treatments.

Dr Esteller, who is also Chaiman of Genetics at the University of Barcelona, explains: "Frequently, promising cancer therapies fail when applied to patients in the real clinical setting. This occurs despite many of these new treatments demonstrating promising results at the preclinical stage in the lab.

One explanation is that many of the tumor models used in early research phases are established cell lines that have been growing for many decades and in two dimension (2D) culture flasks. These cancer cells might not completely resemble the features of real tumors from patients that expand into three dimensions (3D).

Very recently, it has been possible to grow cancers in the laboratories but respecting the 3D structure: these models are called 'organoids'. We know very little about these cells and if they actually mimic the conformation of the tumor within the body, particularly the chemical behaviors (known as modifications) of DNA that are called epigenetics ("beyond the genetics"), such as DNA methylation.

"What our article solves is this unmet biomedical need in the cancer research field: the characterization of the epigenetic fingerprint of human cancer organoids. The developed study shows that these tumor models can be very useful for the biomedical research community and the pharmaceutical companies developing anti-cancer drugs."

Specifically looking at 25 human cancer organoids, made available from the American Type Culture Collection (ATTC), Dr Esteller, an ICREA Research Professor, states that during their research the team made some interesting findings around the properties of the cancer cells.

"First, we found that every cancer organoid retains the properties of the tissue of origin, so this shows that if the samples were obtained from the surgery of a colon or pancreatic cancer, the organoid closely resembles the original primary tumor.

"Second, we discovered that there is no contamination of normal cells, thus, the malignant pure transformed cells can be analyzed without interferences. And finally, the 3D organoid cancers are closer to the patient tumors than the commonly used 2D cell lines."

The study will now be used to help form Big Data, as the team's samples will be shared in easily accessible public databases between researchers to promote more collaborative studies.

"This will enable further data mining to produce new cancer discoveries using different biometric approaches or focusing on particular genes," explains Dr Esteller.

"And most importantly, the characterized cancer organoids can be readily obtainable from a reliable provider (the ATCC) researchers around the world can use the epigenetic information of these sharable samples to develop their own investigations."

Simon Wesson | EurekAlert!
Further information:
https://www.tandfonline.com/doi/10.1080/15592294.2020.1762398
http://dx.doi.org/10.1080/15592294.2020.1762398

Further reports about: 2D 3D DNA cancer cells cancer research epigenetic human cancer primary tumor tumors

More articles from Health and Medicine:

nachricht Protein shredder regulates fat metabolism in the brain
08.05.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Being in the wrong place can set off an allergic reaction
05.05.2020 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: IST Austria scientists demonstrate quantum radar prototype

Physicists at the Institute of Science and Technology Austria (IST Austria) have invented a new radar prototype that utilizes quantum entanglement as a method of object detection. This successful integration of quantum mechanics into our everyday devices could significantly impact the biomedical and security industries. The research is published in the journal Science Advances.

Quantum entanglement is a physical phenomenon where two particles remain inter-connected, sharing physical traits regardless of how far apart they are from one...

Im Focus: First simulation of a full-sized mitochondrial membrane

New algorithm links different scales, bringing simulated cell a step closer

Scientists from the University of Groningen have developed a method that combines different resolution levels in a computer simulation of biological membranes.

Im Focus: How Nano-Sensors Help with Treatment

ESF-funded project "SenseCare” at Chemnitz University of Technology successfully completed - Therapeutic support, especially for diabetes mellitus

In the medical field, flexible and highly sensitive sensors can combine diagnostics and treatment with high comfort for patients.

Im Focus: Quantum jump tipping the balance

A new door to the quantum world: when an atom absorbs or releases energy via the quantum jump of an electron, it becomes heavier or lighter, according to Einstein’s theory of relativity (E = mc²). However, the effect is minuscule for a single atom. Nevertheless, the team of Klaus Blaum and Sergey Eliseev at the Max Planck Institute for Nuclear Physics has successfully measured this tiny change in the mass of individual atoms for the first time. In order to achieve this, they used the ultra-precise Pentatrap atomic balance at the institute in Heidelberg. The team discovered a previously unobserved quantum state in rhenium, which could be interesting for future atomic clocks.

Astonishing, but true: if you wind a mechanical watch, it becomes heavier. The same thing happens when you charge your smartphone. This can be explained by the...

Im Focus: Drops of nanoparticles self-stir and communicate

Researchers at the Max Planck Institute for Intelligent Systems have discovered a new mechanism of self-organization of active matter. When photochemically active nanoparticles are enclosed at high density within a drop and are exposed to UV light, a self-organized flow pattern emerges by spontaneous symmetry breaking. Furthermore, each drop communicates with neighbouring drops by exchanging chemicals, and coordination of their internal flows occurs – even when far apart.

Communication and organized behaviour is considered to be the quintessence of living systems. For example, understanding how cellular patterns form is one of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

 
Latest News

Light, sound, action: extending the life of sound waves

11.05.2020 | Physics and Astronomy

When every particle counts: IOW develops comprehensive guidelines for microplastic extraction from environmental samples

11.05.2020 | Ecology, The Environment and Conservation

IST Austria scientists demonstrate quantum radar prototype

11.05.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>