Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame network physicists create model to predict traffic patterns

12.11.2014

Researchers at the University of Notre Dame have designed a simple, yet highly accurate traffic prediction model for roadway transportation networks. They have recently published their work in the journal Nature Communications.

"Transportation networks and in particular the highway transportation network are like the body's circulatory system for the nation," says Zoltán Toroczkai, professor of physics at the University of Notre Dame, who co-authored the study with physics graduate student Yihui Ren and national and international collaborators.

The team's model is built on principles from physics similar to those that describe the current flows in circuits. However, it also addresses the uncontrolled human dimension for both the choice of destination and the choice of pathway to the destination.

The choice of destination is based on an earlier model by Filippo Simini, Marta González and others that takes into account the reasons why people travel, such as commuting to a job. That study is coupled with a model of the cost considerations people use to choose which path to take, such as favoring a quicker interstate route over a shorter but slower road.

"We tend to consider time-based costs rather than distanced-based costs when traveling," Toroczkai says. "The majority of people, at least in the U.S., are worried about the time they spend on the road. While it seems natural, our work demonstrates that quantitatively."

Researchers applied their model to the U.S. highway network with 174,753 road segments and 137,267 intersections and compared its predictions to actual observed traffic data. When the model assumed that people choose paths to save time, it was far more accurate than previous models including those based on adjustable parameters. The model was less accurate when it considered paths chosen to save distance, demonstrating that travelers put more value on saving time.

"The roadway network has evolved organically over hundreds of years, and its properties encode the modalities in which our economy interacts across space. However, unlike in electronic circuits in which we know precisely all the flows (currents) by design, it is much harder to determine flows in transportation networks, due to the human dimension of the traffic."

"It is based on the right principles--principles that actually describe human travel," Toroczkai says. "Its first-principles based nature is what is important." For this reason, the model can be directly used also when part of the network is disabled, perhaps by a natural disaster or nuclear event, to predict the impact on the remainder of the network.

Toroczkai, who is the co-director of the Interdisciplinary Center for Network Science and Applications at Notre Dame, co-authored the paper titled, "Predicting commuter flows in spatial networks using a radiation model based on temporal ranges" with Yihui Ren at the University of Notre Dame, Mária Ercsey-Ravasz of Babes-Bolyai University in Romania, Marta C. González of M.I.T, and Pu Wang of Central South University in Hunan, China.

Zoltán Toroczkai | EurekAlert!
Further information:
http://www.nd.edu/

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling

17.10.2019 | Physics and Astronomy

Creating miracles with polymeric fibers

17.10.2019 | Physics and Astronomy

Synthetic cells make long-distance calls

17.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>