Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invention that can be easily retrofitted makes railway traffic safer

10.07.2014

A newly developed simple device helps in better locating trains on the rail network.

Train location systems traditionally work with track current circuits or loops, which make use of the short circuit established between the rails and the train’s axles. The electric current can however be disturbed by dirt or corrosion on the contact surfaces. The solution to this problem developed at the Offenburg University of Applied Sciences is now ready for testing under real life conditions.


A newly developed simple device helps in better locating trains on the rail network.

One of the central requirements in railway traffic is to always know whether a track segment is free or occupied by a train. Precise and robust localization of trains is essential to prevent serious accidents. At the same time, it allows a higher train frequency and thus a better use of the rail capacity. The more precise the localization of the trains, the shorter the distance between trains can be.

The process developed at the Offenburg University of Applied Sciences allows a more reliable determination of the track usage. Until now the position of trains was mostly determined by so-called track current loops. The steel wheels and axles of a train generate appropriate signals by means of the short circuit created between the two rails.

The layer of rust and dirt that develops on the rails over time represents a problem for this process. Furthermore, problems are encountered when locomotives are used across national borders because the wheels, due to the different profiles used in different countries, may not be touching the rail track head in a position, where the rail is kept clean through constant usage.

Professor Peter Hildenbrand of the Faculty of Electrical Engineering and Information Technology, Offenburg University of Applied Sciences, developed an innovative solution to this issue.

The new process achieves the necessary voltage drop which acts as signal for the control system by creating sparks which are capable of penetrating potentially isolating dirt layers. The device which creates the sparks (electrodes, control, power supply etc.) is mounted on the railway carriage. 

Implementing the present invention allows the continued use of the widely implemented track current loops without the need for any modifications. There is no need to make costly changes to the track network, as is the case with inductive track monitoring systems, nor is there a need for substantial investments as is the case with GPS based systems. In the latter case, the reception depends on weather conditions, tunnels and stations and therefore necessitates costly supplementary solutions.

The costs associated with this robust and reliable system are very low and the retro-fitting of older railway stock is simple. The design is uncomplicated so that trains and carriages can be retrofitted easily. The component parts of the system are robust and already proven in other applications, for example the car industry. In addition, the device is independent of the electricity network. Electricity is being supplied by batteries and thus the system remains operational even when the train is stationary and there is no power supply.

In a more integrated Europe with increased rail traffic across national borders, the fact that locomotives do not have to be changed at the border represents an enormous time and cost saving. For this reason, TLB was keen to seek patent protection not only in Germany but also in France and Great Britain.

TLB assists the Offenburg University of Applied Sciences in the commercialisation and marketing of the invention and currently seeks jointly with the inventor, Professor Hildenbrand, collaborators for the further development and licensees to test the system under real life conditions. Rail carriage manufacturers and enterprises involved in railway signaling technology are seen as likely candidates for such a collaboration.

The Offenburg University of Applied Sciences, which owns the rights to this invention, has charged the Technologie-Lizenz-Büro der Baden-Württembergischen Hochschulen (TLB) GmbH in Karlsruhe with the management of the patent rights and the commercialisation of the invention. TLB is now looking for suitable commercial partners and/or licensees and supports the university in the commercialisation and marketing of the innovation.
Further information is available by contacting Mr Emmerich Somlo Dipl. Ing., TLB-Innovations Manager on telephone +49 721 790 040 or via email esomlo@tlb.de

Weitere Informationen:

http://www.technologie-lizenz-buero.com
http://www.hs-offenburg.de/en/

Annette Siller | idw - Informationsdienst Wissenschaft

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>