Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching the orbital angular momentum of plasmons on a nanoscale

17.03.2017

A team of Israeli and German researchers from Technion in Haifa and the universities of Kaiserslautern, Duisburg-Essen and Stuttgart have been able to reveal for the first time the dynamics of the orbital angular momentum of plasmons. The researchers used a combination of extremely high-quality single crystals of gold, ultrafast laser pulses and an electron microscope. Their findings are published in Science in the March 17, 2017 issue.

When an electron orbits around the nucleus in an atom, simple models describe its motion with spin and angular momentum. Spin means, in a classical picture, that the electron spins around much like a little sphere, and angular momentum describes the motion of the electron around the nucleus.


Symbolic image of light interacting with a gold surface with 4-fold symmetric Archimedean spirals: Plasmons with orbital angular momentum are excited and swirl towards the center

University of Stuttgart, Sven Hein

This model is very similar to the earth orbiting the sun, spinning around an axis that extends from the North to the South Pole (which takes a day), while simultaneously travelling around the sun (which takes a year).

Light can have similar properties: Its “spin”, which should rather be called “helicity”, tells us whether a photon has right-handed or left-handed circular polarization. But what corresponds to the angular momentum? This is the so-called orbital angular momentum, which describes a wavefront that spirals around like a helix, just like a staircase in a tower.

This orbital angular momentum has recently gained a lot of attention, as researchers hope to encode information into it and thus either enhance the capacity of fiber optical communication systems, or use it for quantum information protocols, which might be useful for secure communication.

However, the size of these beams cannot be smaller than one wavelength of light, or about half a micrometer in the visible spectrum, which limits the possibility to integrate such beams into tiny devices in the future.

Here is where plasmonics enters the picture. Plasmons are collective electron oscillations in metals that can be excited by light. If a stream of photons impinges, for example, onto a gold surface, the electric field of the light field makes the negatively charged electrons oscillate back and forth, just like water in a bottle when it is shaken. The advantage of these plasmonic oscillations is that they are bound to the surface of the gold or to the interface between gold and its substrate, and that they can have a much smaller wavelength than the original light. Therefore, they are ideally suited for integrated devices with sizes below 100 nm (one-tenth of a micrometer).

The Israeli/German research team cut Archimedean spirals into the gold, which allowed the light to excite plasmons that had orbital angular momentum. Grisha Spektor from Technion in Haifa, the first author of the paper, came up with the idea to vary the geometry of the spirals, hence creating angular orbital momentum that ranged from 1 all the way to 10.

Bettina Frank from Harald Giessen’s group in Stuttgart was able to produce extremely high-quality gold samples that had single crystal properties and were atomically flat. They cut the spirals into those crystals. Martin Aeschlimann and Deirdre Kilbane in Kaiserslautern and Philip Kahl and Frank Meyer zu Heringdorf in Duisburg then used ultrafast lasers to shine light pulses as short as 13 femtoseconds (10-15 seconds) onto the crystals, which created plasmon waves.

They observed with an electron microscope how the plasmons ejected electrons at the top of the metal and could in such manner image the plasmonic waves. By sending two ultrashort laser pulses with a delay onto the sample and then varying the delay, it was possible to record complete movies of the plasmon waves. In this case, the first pulse created the plasmon and the second pulse interacted with the plasmon and liberated electrons on the surface, which were then imaged.

The researchers were stunned to observe the formation of plasmonic vortices by inward spiraling plasmon waves, and to see how those vortices spun around on a time scale that was comparable with the time that light needs to complete an oscillation, a so-called optical cycle.

The larger the orbital angular momentum, the longer the vortex takes to spin around. Interestingly, the observation of the vortex dynamics can also be used to distinguish the helicity of the light, meaning that one can separate left- from right-handed circular polarization.

The authors believe that their work can open the door to ultra-compact integrated devices that utilize orbital angular momentum of plasmons to encode information. Furthermore, novel light-matter-interaction effects on a deep subwavelength scale could be studied when such plasmons interact with matter that is sensitive to higher orbital light momenta, for example in non-dipolar transitions.

Reference:
G. Spektor et al., Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices, Science March 17, 2017

Contact information:
Meir Orenstein, Technion, Haifa, Israel, meiro@ee.technion.ac.il, +972 52 8521144,
English&Hebrew

Grisha Spektor, Technion, Haifa, Israel, grisha.spektor@gmail.com, +972 52 8521144,
English&Hebrew

Harald Giessen, University of Stuttgart, Germany, giessen@physik.uni-stuttgart.de, +49-711-6856 5111, English&German

Martin Aeschlimann, University of Kaiserslautern, Germany, ma@physik.uni-kl.de, +49-631-205-2322, English&German

Frank Meyer zu Heringdorf, University of Duisburg-Essen, Germany, meyerzh@uni-due.de, +49-203-379-1465, English&German

Weitere Informationen:

http://science.sciencemag.org/content/sci/suppl/2017/03/15/355.6330.1187.DC1/aaj...

Beate Kostka M.A. | idw - Informationsdienst Wissenschaft

Further reports about: Electrons angular momentum crystals nanoscale oscillations polarization wavelength waves

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>