Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using viruses to fight resistant bacteria

21.09.2018

Dr. Li Deng of Helmholtz Zentrum München has been awarded a Starting Grant of the European Research Council (ERC). The scientist intends to tackle antimicrobial resistance by fighting bacteria with their natural enemies – the viruses. The grant is endowed with nearly 1.5 million euros for five years.

Emergence of antimicrobial resistance is a major threat to global health. Worldwide, more than 700,000 people died due to impaired action of antibiotic agents, and it is estimated to cause 10 million deaths a year by 2050.


Dr. Li Deng

© Helmholtz Zentrum München

Li Deng, head of an Emmy-Noether Young Investigator Group at the Institute of Virology of Helmholtz Zentrum München and junior fellow at the Technical University of Munich, aims to tackle this problem with a new approach. In the framework of the newly founded ERC project PHARMS (Bacteriophage inhibition of antibiotic-resistant pathogenic microbes and founding of novel therapeutic strategies), she plans to fight pathogenic bacteria with their natural enemies – the viruses.

To this end, she uses viruses which specifically attack bacteria, so called bacteriophages. “With our approach we use the viruses and phage-derived inhibitors as a natural way to fight antimicrobial resistance”, Li Deng explains.

“We hope that this might become a promising complement to antibiotics.” According to the scientist, the main obstacles in the clinical application of phage-based therapy are the limited number of phage isolates and the unknown molecular mechanisms of phage-delivered bactericidal action. “Moreover, we know too little about the mechanisms behind these bactericidal effects.”

Building on the recent advances of Deng’s group, PHARMS aims to deploy a systematic approach to identify the underlying mechanisms for phage inhibition of resistant bacteria strains. Based on this, the scientists aim to develop further phage derived therapeutic strategies.

Using an interdisciplinary research plan, PHARMS will discover phage-specific bactericidal action modes at all possible levels ranging from nucleotide sequence and transcription to translation, in order to elucidate the molecular mechanisms driving phage-mediated inhibition of antimicrobial resistance. One example of the respective bacteria is Helicobacter pylori which is often found in the stomach and linked to gastric ulcers and stomach cancer.

In the long run, the project is positioned to provide the rational framework for the design of novel therapeutic strategies aimed at treating common and life-threatening infectious diseases. “The rapid spread of antimicrobial resistance, and its devastating consequences for patients as well as healthy individuals, makes it one of the most important scientific challenges of our time”, Li Deng says. “Our work aims at making helpful contributions to society in this context.”

Further Information

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Institute of Virology (VIRO) investigates viruses that chronically infect humans and can cause life-threatening diseases. The research activities of the institute focus mainly on the HI virus which causes AIDS, on endogenous retroviruses, which are integrated into our germline, and hepatitis B and C viruses, which cause liver cirrhosis and hepatocellular carcinoma. Molecular studies identify new diagnostic and therapeutic concepts to prevent and treat these viral diseases or to prevent the formation of virus-induced tumors. http://www.helmholtz-muenchen.de/viro

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187-2238 – E-mail: presse@helmholtz-muenchen.de

Wissenschaftliche Ansprechpartner:

Dr. Li Deng, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Virology, Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187-49195 – E-mail: li.deng@helmholtz-muenchen.de

Weitere Informationen:

http://Please find a CV of Li Deng (https://www.helmholtz-muenchen.de/viro/institute/about-us/staff/staff/ma/6317/Dr...) as well as more information about research of her lab in the Institute of Virology on the Helmholtz Zentrum München website: https://www.helmholtz-muenchen.de/viro/research/emmy-noether-research-group-vira...

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>