Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tuberculosis: New insights into the pathogen

10.10.2019

Researchers at the University of Würzburg and the Spanish Cancer Research Centre have gained new insights into the pathogen that causes tuberculosis. The work published in Nature provides the basis for a new approach in antibiotic therapy.

Tuberculosis is a highly contagious infectious disease that is typically spread through aerosols and mainly affects the lungs. According to the World Health Organization (WHO), an estimated 1.7 million people die from such an infection worldwide every year. In addition, a quarter of the world's population carries a form of tuberculosis that lies dormant without symptoms for a long time, but can break out eventually.


Model of the secretion system of Mycobacterium tuberculosis.

Sebastian Geibel

Nanomachines in the cell envelope

During infection Mycobacterium tuberculosis, the main causative agent of tuberculosis, secretes a large number of effector proteins through type VII secretion systems – small nanomachines which are composed of proteins that reside in the cell envelope. The effector proteins are specialized in fighting the immune defense or enable the uptake of nutrients to ensure the bacterial survival in the host. How these central secretion systems work, is still poorly understood.

Scientists from the Julius-Maximilians-Universität Würzburg (JMU) and the Spanish Cancer Research Centre CNIO (Centro Nacional de Investigaciones Oncológicas) have now succeeded in deciphering the molecular architecture of these nanomachines. Dr. Sebastian Geibel, who heads a research group at the Institute of Molecular Infection Biology funded by the Bavarian Elite Network and who is also affiliated with the Rudolf Virchow Centre of the JMU, was in charge of this work. The scientists have published their work in the current issue of the journal Nature.

Measurements at very low temperatures

Over the past five years, the research group of Dr. Geibel has worked intensively on the stable reconstitution of one of these secretion machines and the preparation of the sensitive sample for measurements on the cryo electron microscope, which requires the protein complexes to be shock frozen under defined conditions.

In collaboration with the research group of Oscar Llorca in Madrid, which computed three-dimensional maps of the protein complex using a sophisticated data processing strategy, the researchers from Würzburg were able to create a model of its molecular structure. The researchers were able to identify important elements of the nanomachine that form the transport pore as well as to locate elements that convert chemical energy into motion and thus drive the transport of effector proteins through the pore.

New approach for new drugs

The findings of the researchers lead to a deeper functional understanding of Type VII secretion systems. In times of rising resistance of mycobacteria to the antibiotics in use and no effective vaccination against tuberculosis in place, the researcher provide an important basis for the development of novel antibiotics that target the assembly or function of the type VII secretion systems.

Wissenschaftliche Ansprechpartner:

Dr. Sebastian Geibel, T: +49 931 31-84590, sebastian.geibel@uni-wuerzburg.de

Originalpublikation:

Architecture of the mycobacterial type VII secretion system. Nikolaos Famelis, Angel Rivera-Calzada, Gianluca Degliesposti, Maria Wingender, Nicole Mietrach, J. Mark Skehel, Rafael Fernandez-Leiro, Bettina Böttcher, Andreas Schlosser, Oscar Llorca & Sebastian Geibel. Nature, 9. October 2019, DOI 10.1038/s41586-019-1633-1.

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Forward or backward? New pathways for protons in water or methanol
09.10.2019 | Forschungsverbund Berlin

nachricht A simple way to control swarming molecular machines
09.10.2019 | Hokkaido University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

Im Focus: A fortress of ice and snow

MOSAiC expedition begins its ice drift on a floe at 85 degrees north and 137 degrees east

After only a few days of searching, experts from the MOSAiC expedition have now found a suitable ice floe, where they will set up the research camp for their...

Im Focus: Jellyfish's 'superpowers' gained through cellular mechanism

Jellyfish are animals that possess the unique ability to regenerate body parts. A team of Japanese scientists has now revealed the cellular mechanisms that give jellyfish these remarkable "superpowers."

Their findings were published on August 26, 2019 in PeerJ.

"Currently our knowledge of biology is quite limited because most studies have been performed using so-called model animals like mice, flies, worms and fish...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Forward or backward? New pathways for protons in water or methanol

09.10.2019 | Life Sciences

Cheap as chips: identifying plant genes to ensure food security

09.10.2019 | Agricultural and Forestry Science

A simple way to control swarming molecular machines

09.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>