Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking the HI virus: Researchers makes visible, how AIDS pathogens multiply in the body

04.10.2019

A research team led by Prof. Christian Eggeling from the Leibniz Institute of Photonic Technology, the Friedrich Schiller University Jena and the University of Oxford has succeeded in using high-resolution imaging to make visible how the HI virus spreads between living cells and which molecules it requires for this. Using superresolution STED fluorescence microscopy, the researchers provide direct proof for the first time that the AIDS pathogen creates a certain lipid environment for replication. "We have thus created a method for investigating how this multiplication can potentially be prevented," says Christian Eggeling. The results were published in Science Advances on October 2, 2019.

The researchers focused on the sluice through which the HI virus (Human Immunodeficiency Virus) emerges from the cell after having infected it: the plasma membrane of the host cell. They used the protein Gag as a marker, which coordinates the processes involved in the maturation of the virus.


Christian Eggeling from Leibniz IPHT and the Friedrich Schiller University Jena

Jan-Peter Kasper/ Friedrich Schiller University Jena

"Where this protein accumulates, the decisive processes take place that lead to the virus releasing itself and infecting other cells," explains Christian Eggeling. In order to decipher these, the researchers examined the diffusion at this budding site of the virus particle.

They found out that only certain lipids interact with the HI virus. Although these lipids were already known in principle, the research team was able to prove this interaction directly in living and infected cells for the first time.

Point of attack to prevent the virus from multiplying

"This provides us with a potential target for antiviral drugs," says Christian Eggeling. "Knowing which molecules the HI virus needs in order to leave the cell and multiply is a crucial prerequisite for investigating how this can be prevented. With our technology, we can now follow this directly.“

Christian Eggeling and his team now want to develop antibodies that attack precisely these molecules — and thus suppress the spread of the virus.

"We not only want to study these antibodies from a medical point of view, but also to find out how their biophysical interaction can be used to enhance their efficacy," says Eggeling, describing his research program.

"For this purpose, we analyze biological processes — namely the interaction of cells and molecules - with the aid of physical parameters such as diffusion. A good year ago, the physicist moved from Oxford to Jena. In addition to his professorship for "Superresolution Microscopy" at the university, he heads the research department "Biophysical Imaging" at Leibniz IPHT. He also leads his research group at the MRC Human Immunology Unit and at the Wolfson Imaging Centre of the Weatherall Institute of Molecular Medicine at Oxford University.

Christian Eggeling combines spatially superresolution fluorescence microscopy techniques with methods that enable the movement of labelled molecules to be tracked in real time in order to understand how diseases develop at the smallest molecular level. This enables him and his team of researchers to investigate individual molecules - for example in cell membranes - in living cells spatially and temporally. "This enables us to reveal cellular mechanisms at the molecular level that are far too fast for previous investigation methods and run on spatial scales that are far too small.

Christian Eggeling has already researched new superresolution fluorescence microscopy techniques at the Max Planck Institute for Biophysical Chemistry in Göttingen in the group of Stefan W. Hell. Together with Eric Betzig and William E. Moerner, Stefan Hell received the Nobel Prize for Chemistry in 2014. In Jena, Eggeling is now working closely with biologists and physicians to find out how these methods can be used to detect diseases earlier and more accurately and possibly even prevent them.

Wissenschaftliche Ansprechpartner:

Prof. Christian Eggeling
Friedrich Schiller University Jena // Leibniz Institute of Photonic Technology

+49 3641 206-401 (Leibniz IPHT); +49 3641 9-47670 (University)
christian.eggeling(a)leibniz-ipht.de; christian.eggeling@uni-jena.de

Originalpublikation:

C. Favard, J. Chojnacki, P. Merida, N. Yandrapalli, J. Mak, C. Eggeling, D. Muriaux: HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly. In: Science Advances 2019, 5. 

DOI: 10.1126/sciadv.aaw8651

Weitere Informationen:

https://www.leibniz-ipht.de/en/institute/presse/news/detail/dem-hi-virus-auf-der...

Lavinia Meier-Ewert | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>