Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The regulators active during iron deficiency

27.01.2020

Botany: publication in Plant Physiology

When a plant is lacking important nutrients, it cannot simply move to another location where it can get the nutrients it needs. Instead, it has to adapt to the situation by adjusting its metabolism. It does this by activating certain programmes incorporated in its genome.


Bioinformatics work steps needed to identify the cis-regulatory elements. The findings of the study help to understand genetic regulation of plant responses to iron deficiency.

Credit: HHU / Birte Schwarz

Iron is one of those nutrients that is essential for plants' growth and survival. It plays a role in photosynthesis and water regulation. Plants absorb iron through their roots, but the iron must be present in sufficient quantities and in a form that can be processed by the plant.

Past research has identified more than 1,000 genes in plant roots that can be active in regulatory processes responding to iron deficiency. 'Cis-regulatory elements' (CREs) coordinate the specific genetic response.

A team of researchers working under Prof. Dr. Petra Bauer from the HHU Institute of Botany and Prof. Dr. Shin-Han Shiu from the Department of Plant Biology at MSU has developed a method for predicting candidates for these specific CREs. The team used an artificial intelligence method known as the machine learning approach.

The approach helped the researchers to identify roughly 100 CRE candidates in the model plant Arabidopsis thaliana (thale cress). They used this knowledge to determine transcription factors - specific CRE-binding proteins that trigger the response to iron deficiency and activate it in the root cells.

For optimised plant cultivation, it is important to know how the plant responds in situations of scarcity and whether any targeted cultivation measures can be taken to produce particularly robust plants.

"Growers can use the CREs identified to increase iron uptake in new plant varieties in a targeted manner", emphasises Prof. Bauer. Her staff member and first author of the study, Dr. Birte Schwarz, adds: "In this way, a better supply of iron can be ensured along with better adaptation of the plants to poor soil."

###

The bioinformatics work was primarily carried out at MSU, with Dr. Schwarz making a key contribution to this work during her six-month stay in the USA as part of her doctoral studies. This international research collaboration is funded by the DFG (German Research Foundation) within the framework of the International Graduate Programme iGrad-Plant (https://www.igrad-plant.hhu.de).

The bioinformatics strategy developed is more versatile in use. It can also serve to find the authoritative regulation mechanisms for other stress factors, such as water scarcity or pathogen attack.

Original publication

Birte Schwarz, Christina B Azodi, Shin-Han Shiu, Petra Bauer, Putative cis-regulatory elements predict iron deficiency responses in Arabidopsis roots, Plant Physiology, January 2020

DOI: 10.1104/pp.19.00760

Media Contact

Dr. Arne Claussen
arne.claussen@hhu.de
49-021-181-10896

http://www.uni-duesseldorf.de/ 

Dr. Arne Claussen | EurekAlert!
Further information:
http://dx.doi.org/10.1104/pp.19.00760

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>