Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The genetic secret of night vision

25.02.2020

Compact DNA organization improves vision in nocturnal mammals.

One of the most remarkable characteristics of the vertebrate eye is its retina. Surprisingly, the sensitive portions of the photoreceptor cells are found on the hind side of the retina, meaning that light needs to travel through living neural tissue before it can be detected.


While the origin of the high optical quality of the retina remain largely uninvestigated, it has long been proposed that a peculiar DNA organization would serve to improve vision in nocturnal mammals. Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden now showed that the optical quality of the mouse retina increases in the first month after birth that imparts improved visual sensitivity under low light conditions.

This improvement is caused by a compact organization of the genetic material in the cell nucleus of rod photoreceptor cells that responsible for dim light vision. The study is published in eLife.

Our retina is an amazing feature of the eye of vertebrates. This light-sensitive layer of tissue is lining the back of the eye-ball and acts as a screen for images projected by the lens. The retina has a thickness of 130 to 500 micrometer and is composed of five layers of dense neural tissue.

Since the sensitive portions of the photoreceptor cells are found on the hind side of the retina, light needs to travel through this dense neural tissue to reach the photoreceptors. Researchers suggested that a certain compact arrangement of DNA in the cell nucleus of the rod photoreceptors could improve night vision in nocturnal animals but it remained unclear if and how night vision would benefit from this organization of genetic material.

Scientists around the research group leader Moritz Kreysing at the MPI-CBG together with colleagues from the TU Dresden and the Biozentrum at the Ludwig Maximilians Universität in Munich wanted to find out, if and why cells of retinal neural cells are optically special and what the implications for the transparency of the retina are.

Transparency in this context means that each rod cell scatters less light, which causes it to be more transparent. In particular, the researchers focused on the importance of DNA compaction in the rod photoreceptor cells and if changes in the optical properties of the retina are strong enough to improve mouse vision under challenging light conditions.

Kaushikaram Subramanian, the first author of the study, explains: “When we studied mice, we found that the optical quality of the retina increases during the first month after birth. There is a 2-fold improvement in the retinal transparency caused by the compact rearrangement of the genetic material in the rod nucleus. With behavioral tests at moonlight intensities, we could also show that mice with this DNA adaptation were able to see better under low light conditions compared to mice that lacked such an arrangement.” The mice were ten times better at detecting motions and better see contrasts in dim light.

The research not only demonstrates function for a prominent exception of cell’s DNA organisation. The work further shows that image clarity is not only a question of the image projecting lens, but sensitively depends on the optical quality of the retina.

Moritz Kreysing, who supervised the study and is also a member of the Center for Systems Biology Dresden, summarizes: “Our study implies that genetics can be used to change optical properties of cells and tissues. It would be exciting to see if genetics can be used to improve transparency of cells and tissues that will immensely benefit biological microscopy, because living tissues could be made transparent to better study them. So far, this is only possible with non-living tissue.”

Wissenschaftliche Ansprechpartner:

Moritz Kreysing
+49 (0) 351 210 1310
kreysing@mpi-cbg.de

Originalpublikation:

Kaushikaram Subramanian, Martin Weigert, Oliver Borsch, Heike Petzold, Alfonso Garcia, Eugene Myers, Marius Ader, Irina Solovei, Moritz Kreysing: “Rod nuclear architecture determines contrast transmission of the retina and behavioral sensitivity in mice” eLife, 11. December, 2019. Doi: 10.7554/eLife.49542

Katrin Boes | Max-Planck-Institut für molekulare Zellbiologie und Genetik
Further information:
https://www.mpi-cbg.de/de/home/

More articles from Life Sciences:

nachricht TU Bergakademie Freiberg researches virus inhibitors from the sea
27.03.2020 | Technische Universität Bergakademie Freiberg

nachricht The Venus flytrap effect: new study shows progress in immune proteins research
27.03.2020 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>