Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The cerebral cortex is a fast learner

30.11.2018

Tübingen researchers trace the formation of memories in the cerebral neocortex

A team of researchers from the University of Tübingen and the Max Planck Institute for Biological Cybernetics has found that the cerebral cortex plays a much bigger role in storing information than previously believed. The scientists, headed by Svenja Brodt, Professor Steffen Gais and Dr. Monika Schönauer, used high-resolution magnetic resonance imaging to show that the cerebral cortex is involved already early in the learning process.


Neuroscience now has to update a widely accepted model, which says this part of the brain is a slow learner. The new study is published in Science.

For centuries, researchers have been trying to track down the secrets of human memory. For a long time, processes that form new memories were barely understood. Traditional models assume that the brain has two systems for memory – one in the hippocampus, which takes in large amounts of information quickly, and the other in the cerebral cortex, where lasting memories can be stored through repeated learning.

The physical signs of memory formation

In this new study, the researchers gave their test subjects a learning task in which they had to remember several pairs of objects and their spatial arrangement on a computer screen – as in a children’s game of “pairs.” While they conducted this task, their brain activity was recorded by an MRI scanner. The researchers also carried out a special measurement showing the brain tissue microstructure.

They used a process called diffusion-weighted imaging, which measures the motion of water molecules in the brain. Because water is slowed down by cell membranes, tracking its motion gives the scientists detailed information about the tissue structure. Measurements were taken at three times: immediately prior to the learning task, 90 minutes later and twelve hours later.

“A comparison of the diffusion images before and after learning with a control condition allowed us to draw conclusions about smallest changes in tissue structure caused by the learning process,” explains lead author Svenja Brodt. Thus, traces of the learning process can be observed in the inactive state following completion of the learning task.

“We are moving away from mere snapshots of brain activity taken while the brain is absorbing or recalling information towards an examination of the physical traces left by the storing of information in our brains,” Brodt says.

With the help of diffusion-weighted imaging, researchers were able to measure structural changes in the cerebral cortex already 90 minutes after learning – in precisely those regions that showed strong memory-related activity during the learning task.

The strongest changes were found in the back of the parietal lobe, the posterior parietal cortex. The bigger these changes were, the better the test subjects could remember the object pairs in the long term.

Stable changes in the cerebral cortex

“These structural changes are not a short-term by-product of increased cell activity during learning, because they remain stable for at least twelve hours,” says study leader Monika Schönauer. She says studies on animals show that these changes are linked to a strengthening of connections between nerve cells, the so-called synapses.

“Our results confirm that the cerebral cortex plays a role early on in learning processes, and show that it is immediately involved in the physical storage of information,” Schönauer states. “The earlier assumption that the cerebral cortex learns only slowly can no longer be maintained.”

Head of the working group Steffen Gais adds: “Our findings in recent years have great significance for the further development of current theories about memory formation.”

These new findings offer an explanation as to how patients with a damaged hippocampus are in some cases able to learn and remember new information, Gais says. The further investigation of the conditions under which information is stored directly in the cerebral cortex could help in the long term to develop new learning strategies for certain types of memory loss.

Wissenschaftliche Ansprechpartner:

Svenja Brodt
University of Tübingen
Institute of Medical Psychology and Behavioral Neurobiology
Phone +49 7071 29-73264
svenja.brodt[at]uni-tuebingen.de

Originalpublikation:

S. Brodt, S. Gais, J. Beck, M. Erb, K. Scheffler, M. Schönauer: Fast track to the neocortex: A memory engram in posterior parietal cortex. Science, 30 November 2018.

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-tuebingen.de/

Further reports about: cerebral cortex learning process parietal cortex

More articles from Life Sciences:

nachricht Next step towards replacement therapy in type 1 diabetes
29.11.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht The light switch which activates enzymes
29.11.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A golden age for particle analysis

Process engineers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a method which allows the size and shape of nanoparticles in dispersions to be determined considerably quicker than ever before. Based on gold nanorods, they demonstrated how length and diameter distributions can be measured accurately in just one step instead of the complicated series of electron microscopic images which have been needed up until now. Nanoparticles from precious metals are used, for example, as catalysts and contrast agents for diagnosing cancer. The results have been published in the renowned journal Nature Communications (doi: 10.1038/s41467-018-07366-9).

Even in the Middle Ages, gold particles were used to create vibrant red and blue colours, for example to illustrate biblical scenes in stained glass windows....

Im Focus: Successful second round of experiments with Wendelstein 7-X

The experiments conducted from July until November at the Wendelstein 7-X fusion device at the Max Planck Institute for Plasma Physics (IPP) in Greifswald have achieved higher values for the density and the energy content of the plasma and long discharge times of up to 100 seconds – record results for devices of the stellarator type. Meanwhile, the next round of the step-by-step upgrading of Wendelstein 7-X has begun. It is to equip the device for greater heating power and longer discharges. Wendelstein 7-X, the world’s largest fusion device of the stellarator type, is to investigate the suitability of this configuration for use in a power plant.

During the course of the step-by-step upgrading of Wendelstein 7-X, the plasma vessel was fitted with inner cladding since September of last year.

Im Focus: New process discovered: Mere sunlight can be used to eradicate pollutants in water

Advances in environmental technology: You don’t need complex filters and laser systems to destroy persistent pollutants in water. Chemists at Martin Luther University Halle-Wittenberg (MLU) have developed a new process that works using mere sunlight. The process is so simple that it can even be conducted outdoors under the most basic conditions. The chemists present their research in the journal “Chemistry - a European Journal”.

The chemists at MLU rely on electrons moving freely in water, so-called hydrated electrons, to degrade dissolved pollutants.

Im Focus: Ultracold quantum mix

The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise hardly accessible. A team led by the Innsbruck physicist Francesca Ferlaino has now succeeded for the first time in mixing quantum gases of the strongly magnetic elements Erbium and Dysprosium and creating a dipolar quantum mixture.

Only a few years ago it seemed unfeasible to extend the techniques of atom manipulation and deep cooling in the ultracold regime to many-valence-electron...

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

Top-class programme at the ROS-Industrial Conference 2018

23.11.2018 | Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

 
Latest News

Climate change and air pollution damaging health and causing millions of premature deaths

30.11.2018 | Studies and Analyses

The cerebral cortex is a fast learner

30.11.2018 | Life Sciences

New technology to determine ice on aircraft

29.11.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>