Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The cerebral cortex is a fast learner

30.11.2018

Tübingen researchers trace the formation of memories in the cerebral neocortex

A team of researchers from the University of Tübingen and the Max Planck Institute for Biological Cybernetics has found that the cerebral cortex plays a much bigger role in storing information than previously believed. The scientists, headed by Svenja Brodt, Professor Steffen Gais and Dr. Monika Schönauer, used high-resolution magnetic resonance imaging to show that the cerebral cortex is involved already early in the learning process.


Neuroscience now has to update a widely accepted model, which says this part of the brain is a slow learner. The new study is published in Science.

For centuries, researchers have been trying to track down the secrets of human memory. For a long time, processes that form new memories were barely understood. Traditional models assume that the brain has two systems for memory – one in the hippocampus, which takes in large amounts of information quickly, and the other in the cerebral cortex, where lasting memories can be stored through repeated learning.

The physical signs of memory formation

In this new study, the researchers gave their test subjects a learning task in which they had to remember several pairs of objects and their spatial arrangement on a computer screen – as in a children’s game of “pairs.” While they conducted this task, their brain activity was recorded by an MRI scanner. The researchers also carried out a special measurement showing the brain tissue microstructure.

They used a process called diffusion-weighted imaging, which measures the motion of water molecules in the brain. Because water is slowed down by cell membranes, tracking its motion gives the scientists detailed information about the tissue structure. Measurements were taken at three times: immediately prior to the learning task, 90 minutes later and twelve hours later.

“A comparison of the diffusion images before and after learning with a control condition allowed us to draw conclusions about smallest changes in tissue structure caused by the learning process,” explains lead author Svenja Brodt. Thus, traces of the learning process can be observed in the inactive state following completion of the learning task.

“We are moving away from mere snapshots of brain activity taken while the brain is absorbing or recalling information towards an examination of the physical traces left by the storing of information in our brains,” Brodt says.

With the help of diffusion-weighted imaging, researchers were able to measure structural changes in the cerebral cortex already 90 minutes after learning – in precisely those regions that showed strong memory-related activity during the learning task.

The strongest changes were found in the back of the parietal lobe, the posterior parietal cortex. The bigger these changes were, the better the test subjects could remember the object pairs in the long term.

Stable changes in the cerebral cortex

“These structural changes are not a short-term by-product of increased cell activity during learning, because they remain stable for at least twelve hours,” says study leader Monika Schönauer. She says studies on animals show that these changes are linked to a strengthening of connections between nerve cells, the so-called synapses.

“Our results confirm that the cerebral cortex plays a role early on in learning processes, and show that it is immediately involved in the physical storage of information,” Schönauer states. “The earlier assumption that the cerebral cortex learns only slowly can no longer be maintained.”

Head of the working group Steffen Gais adds: “Our findings in recent years have great significance for the further development of current theories about memory formation.”

These new findings offer an explanation as to how patients with a damaged hippocampus are in some cases able to learn and remember new information, Gais says. The further investigation of the conditions under which information is stored directly in the cerebral cortex could help in the long term to develop new learning strategies for certain types of memory loss.

Wissenschaftliche Ansprechpartner:

Svenja Brodt
University of Tübingen
Institute of Medical Psychology and Behavioral Neurobiology
Phone +49 7071 29-73264
svenja.brodt[at]uni-tuebingen.de

Originalpublikation:

S. Brodt, S. Gais, J. Beck, M. Erb, K. Scheffler, M. Schönauer: Fast track to the neocortex: A memory engram in posterior parietal cortex. Science, 30 November 2018.

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-tuebingen.de/

Further reports about: cerebral cortex learning process parietal cortex

More articles from Life Sciences:

nachricht AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Small RNAs link immune system and brain cells
13.11.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnetic tuning at the nanoscale

13.11.2019 | Physics and Astronomy

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

13.11.2019 | Physics and Astronomy

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>