Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The architecture of a 'shape-shifting' norovirus

01.04.2020

Every picture tells a story... none more so than this detailed visualisation of a strain of the norovirus.

Created from 13,000 separate images taken by an electron microscope, it reveals in rich detail the structure of the virus. It shows bump-like protrusions on the outside of the virus capsid, the protein shell that holds the genome of the virus.


This is an image of the murine norovirus captured by cryo-electron microscopy.

Credit: University of Leeds


The image shows how the protrusions on the exterior of the virus change shape.

Credit: University of Leeds

Joseph Snowden, a PhD researcher from the Astbury Centre for Structural Molecular Biology at the University of Leeds, said it revealed that the protein casing did not keep a fixed shape - as the protrusions on the surface would extend, retract and rotate.

This dynamic shape-shifting may hold clues as to why the noroviruses are such potent pathogens, responsible for over 200,000 deaths worldwide each year, mainly in low-to-middle-income countries. In the UK, noroviruses cause the winter vomiting bug that forces the closure of schools and hospitals.

To identify subtle changes to the structure of these protein shells, the scientists processed the data from the images with a super computer, using a method called "focussed classification".

The study, Dynamics in the murine norovirus capsid revealed by high-resolution cryo-EM, is reported in the online journal PLOS Biology. This link will go live when the paper is published:

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.pbio.3000649

For safety reasons, the researchers used a mouse norovirus in their study, which closely resembles the human noroviruses.

Mr Snowden said: "The constant changing or morphing of the virus shell may enable it to confuse the body's defence systems.

"Immune systems work on the basis of molecular shape. The body's defences will produce proteins that bind to pathogens to prevent them from infecting host cells. But if the shape of the virus is constantly changing, the body's defence systems may be unable to act efficiently."

The protrusions seem able to move independently or in a co-ordinated fashion and the scientists believe this may enable the virus to prime itself ready for infection depending on where it is - i.e. if it is in the digestive tract of a host organism.

It is believed that this study is the first study to use the focussed classification computing tool to investigate the structure of a norovirus.

Structural insight to aid vaccine development

Dr Morgan Herod, one of the senior authors on this study, also from the University of Leeds, hopes that a greater understanding of the structure of the norovirus may help with vaccine development, which so far has been unsuccessful.

Dr Herod said "The University of Leeds has a strong track record in the use of virus like particles (VLPs) to create vaccine candidates, for example against polio. VLPs are harmless proteins modelled on the structure of a virus's casing and they fool the immune system into thinking the body is under attack, prompting an immune response. "

"Our research shows that the capsid or protein shell of norovirus is dynamic - and perhaps we have to look at VLPs that are better able to mimic this aspect of norovirus structure."

"That will make the vaccine development task a little harder."

###

Notes to Editors

For further information, please contact David Lewis in the University of Leeds press office: d.lewis@leeds.ac.uk

Funding

This work was supported by Wellcome (wellcome.ac.uk) PhD studentships, Medical Research Council (mrc.ukri.org), the UK Biotechnology and Biological Sciences Research Council (bbsrc.ukri.org BB/K003801/1). Electron microscopy was performed in the Astbury Biostructure Laboratory, which was funded by the University of Leeds and Wellcome (wellcome.ac.uk 108466/Z/15/Z). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK, with more than 38,000 students from more than 150 different countries, and a member of the Russell Group of research-intensive universities. The University plays a significant role in the Turing, Rosalind Franklin and Royce Institutes.

We are a top ten university for research and impact power in the UK, according to the 2014 Research Excellence Framework, and are in the top 100 of the QS World University Rankings 2020. Additionally, the University was awarded a Gold rating by the Government's Teaching Excellence Framework in 2017, recognising its 'consistently outstanding' teaching and learning provision. Twenty-six of our academics have been awarded National Teaching Fellowships - more than any other institution in England, Northern Ireland and Wales - reflecting the excellence of our teaching.

Over a third of our academics are involved in applied research or as consultants to industry, and over the last ten years, the University of Leeds has produced more than 100 'spin-out' companies.

http://www.leeds.ac.uk

Media Contact

David Lewis
d.lewis@leeds.ac.uk
44-077-100-13287

 @universityleeds

http://www.leeds.ac.uk 

David Lewis | EurekAlert!

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>