Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stability and dynamics of the microbiome

12.03.2020

Researchers from Kiel University investigate basic principles of microbiome composition using roundworms as an example

Every multicellular creature in the world is colonized by an unimaginably large number of microorganisms and has evolved together with them in the history of life. The natural microbiome, i.e. the totality of these bacteria, viruses and fungi living in and on a body, is of fundamental importance for the entire organism: on the one hand, it performs vital tasks for the host organism, for example, from supporting resource utilization to protecting against pathogens.


The worm’s microbiome (bacteria highlighted in red) is strongly influenced by the environment and also differs considerably between individual animals.

© Dr Julia Johnke


Dr Julia Johnke, postdoctoral researcher in the Evolutionary Ecology and Genetics group, investigated the composition and dynamics of the worm’s natural microbiome.

© Christian Urban, Kiel University

On the other hand, microbial dysbiosis is associated with various serious diseases in humans like diabetes, Crohn's disease or other chronic inflammatory diseases. Researchers worldwide have therefore been intensively studying the highly complex interactions of host organisms and microorganisms and their involvement in central life processes for several years.

An important approach for their better understanding is the investigation of so-called model organisms. These include the nematode Caenorhabditis elegans, which is only about one millimetre long. Due to its simple organisation and short generation time, C. elegans is well suited for evolutionary biology and microbiome research. Using this example, a research team from the Evolutionary Ecology and Genetics Group at Kiel University has now published a long-term study within the framework of the Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms".

It investigates the underlying factors influencing the composition of the natural intestinal microbiome of the nematode. The researchers from Kiel found out that the microbiome of the worm is strongly influenced by the microbial community of the environment and that there are strong differences between individual animals.

In addition, the worm’s microbiome appears to be strongly influenced by the interactions between the microbes themselves. The results suggest that the microbiome is capable of performing the same basic functions for the host, independent of its exact composition. The researchers recently published their results in the journal Environmental Microbiology.

Individual composition of the microbiome

Researchers from the Evolutionary Ecology and Genetics group headed by Professor Hinrich Schulenburg had already presented the first systematic characterization of a natural C. elegans microbiome a few years ago.

In a follow-up research project, the Kiel research team has now investigated how the composition of this microbial community assembles in the first place and how it differs from the worm's bacterial diet, i.e. the microorganisms found in its direct environment.

"The worm takes up its food and thus certain parts of its microbiome from its direct environment. In the case of our study, this was a compost heap consisting mainly of rotting biomass and hence a microbe-rich substrate," said first author Dr Julia Johnke, scientist in the Evolutionary Ecology and Genetics group.

"The environment is thus the source of the worm microbiome and, in a sense, offers a broad spectrum from which the microbiome can be assembled. However, the comparison of the microorganisms in the substrate and in the animals showed that the microbial community in each individual animal is individually composed and differs from the much more diverse microbial repertoire of the environment," said Johnke.

"The environment is the source of the worm microbiome and in a sense offers a broad spectrum from which the microbiome can be assembled”, she added. The composition of the worm microbiome is therefore subject to environmental filtering that regulates the microbial community independently from external conditions.

An ecosystem inside the body

The Kiel researchers thus concluded that, apart from a few constants, it is always different microbes that make up the natural microbiome of the individual animals. "There is not a specific single set of bacteria that helps the worm to maintain important life functions such as food conversion or infection protection," emphasises Schulenburg, evolutionary biologist and head of the research group.

"The microbiome of the nematode varies considerably from individual to individual and changes dynamically over time," continued Schulenburg. In order to understand how a stable functioning of the microbiome is maintained despite this dynamic development, the Kiel research team studied the interactions between the microorganisms in more detail: Although the microbiome interacts with the host organism, it is at the same time strongly influenced by the interplay between the microorganisms themselves.

For example, certain species of bacteria, which prey on other bacteria, can control the density of bacteria within the microbiome. To a certain extent, this creates space for various other types of microorganisms. Overall, this can result in a high species diversity within the microbiome. "Such high diversity can potentially be beneficial for the host organism," says postdoctoral researcher Johnke.

"The high diversity can ensure a functional redundancy of the microbiome, i.e. that different bacterial species can, to a certain extent, stand in for each other and take over the same functions," continues Johnke. In the opposite case, the increased occurrence of dominant species within the microbiome can lead to a decrease in diversity and thus have potentially negative effects on the host organism - this case, too, can presumably take place in the microbiome of the nematode.

When investigating the microbial composition and its changes over time, scientists, as in the Kiel study, apply, among other things, the principles of community ecology. They regard the microbiome as an independent ecosystem in which, for example, different species of bacteria compete with each other, basically following the same principles as, for example, wild animals that live together in a particular habitat and regulate each other in their populations.

"The consideration of the nematode microbiome as an independent ecosystem is of great value because it allows us to obtain fundamental insights into the colonization dynamics and microbial composition of a living organism," emphasises Schulenburg.

"Similar to the ecosystems of the visible environment, different organisms in this microbial habitat can occupy identical niches or functions or a high species diversity can be beneficial for the stability of the entire system," continued Schulenburg. The new results thus contribute to a better understanding of the composition and dynamics of the microbiome and the associated functional consequences for the host organism.

Images are available for download:

https://www.uni-kiel.de/de/pressemitteilungen/2020/073-johnke-env-microbio-autho...
Caption: Dr Julia Johnke, postdoctoral researcher in the Evolutionary Ecology and Genetics group, investigated the composition and dynamics of the worm’s natural microbiome.
© Christian Urban, Kiel University

https://www.uni-kiel.de/de/pressemitteilungen/2020/073-johnke-env-microbio-worms...
Caption: The worm’s microbiome (bacteria highlighted in red) is strongly influenced by the environment and also differs considerably between individual animals.
© Dr Julia Johnke

https://www.uni-kiel.de/de/pressemitteilungen/2020/073-johnke-env-microbio-sampl...
Caption: The worms were sampled from rotting organic matter that features a characteristic microbial substrate but substantially deviates from the intestinal microbiomes found in the animals. © Christian Urban, Kiel University

About CRC 1182:
The Collaborative Research Centre "Origin and Function of Metaorganisms" is an interdisciplinary network involving about 80 researchers that investigates the interactions of specific microbial communities with multicellular host organisms. It is supported by the German Research Foundation (DFG) and deals with the question of how plants and animals, including humans, form functional units (metaorganisms) together with highly specific communities of microbes. The aim of SFB 1182 is to understand why and how microbial communities form these long-term connections with their host organisms and what functional consequences these interactions have. The SFB 1182 brings together scientists from five faculties of Kiel University, the GEOMAR Helmholtz Centre for Ocean Research Kiel, the Max Planck Institute for Evolutionary Biology Plön, the Heinrich-Heine-Universität Düsseldorf, the Leibniz Institute for Science and Mathematics Education and the Muthesius University of Fine Arts and Design.

More information:

Evolutionary Ecology and Genetics, Zoological Institute, Kiel University:
http://www.uni-kiel.de/zoologie/evoecogen

Collaborative Research Center (CRC) 1182
“Origin and Function of Metaorganisms“, Kiel University:
http://www.metaorganism-research.com

Wissenschaftliche Ansprechpartner:

Prof Hinrich Schulenburg
Evolutionary Ecology and Genetics, Head
Kiel University
Phone: +49 (0) 431-880-4141
E-Mail: hschulenburg@zoologie.uni-kiel.de

Dr Julia Johnke
Evolutionary Ecology and Genetics, Kiel University
Phone: +49 (0) 431-880-4148
E-Mail: jjohnke@zoologie.uni-kiel.de

Originalpublikation:

Julia Johnke Philipp Dirksen Hinrich Schulenburg (2020): Community assembly of the native C. elegans microbiome is influenced by time, substrate and individual bacterial taxa. Environmental Microbiology First published: 30 January 2020
https://doi.org/10.1111/1462-2920.14932

Weitere Informationen:

http://www.uni-kiel.de/zoologie/evoecogen
http://www.metaorganism-research.com

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>