Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space mission for worms

19.01.2009
Worms from The University of Nottingham should be checking in for a flight onboard the Space Shuttle later this year — to help researchers investigate the effect of zero gravity on the body’s muscle development and physiology. Researchers are also hoping to get primary school children involved in the project.

The worms will spend about two weeks in the Japanese Kibo laboratory onboard the International Space Station (ISS) before returning to earth.

Dr Nathaniel Szewczyk, from the Institute of Clinical Research in Derby, studies the signals that control muscle protein degradation and is an old hand at organising space travel for worms to do this. The 2009 mission will be his fourth space worm project — his booking on the ISS has been negotiated through the Japanese space agency. The worms are scheduled to fly to the ISS onboard the Space Shuttle Discovery as part of NASA’s mission STS-129/ULF-3, currently scheduled for October.

Dr Szewczyk’s work centres on the microscopic worm, Caenorhabditis elegans (C. elegans). These worms are the perfect substitute for studying long term changes in human physiology because they suffer from muscle atrophy — muscle loss — under many of the same conditions that people do.

The worms are being sent into space to understand more about muscle atrophy in the hope of helping people who suffer from muscle wasting which can be caused by a myriad of diseases and conditions. Dr Szewczyk wants to explain why astronauts can experience dramatic muscle loss — some astronauts can lose up to 60 per cent of their muscle density in a single mission.

Dr Szewczyk said: “Worms are an excellent model to study the genetic basis of muscle atrophy. This flight should allow us to continue to uncover new ways muscle atrophy is controlled. Our current results suggest that our findings from this space flight mission may be of particular interest not only to astronauts but also to individuals who are bed ridden, immobilized in casts, aged, or who suffer diabetes.”

The C. elegans was the first multi-cellular organism to have its genetic structure completely mapped and many of its 20,000 genes perform the same functions as those in humans. Two thousand of these genes have a role in promoting muscle function and 50 to 60 per cent of these have very obvious human counterparts.

The experiment will be part of the Japanese CERISE payload and is being funded as part of a $1M (£0.6M) United States National Institute of Health grant to investigate the genetic basis of muscle atrophy. The recently installed Kibo lab is being used for the study of biomedicine and material sciences making use of the weightless conditions experienced in orbit.

Biological experiments in space need life support — oxygen, temperature control and pressure — so competition for space on manned flights is fierce and in short supply. The selection process is decided on an international basis through the International Life Sciences working group.

The origins of Dr Szewczyk’s worms can be traced back to a rubbish dump in Bristol. C. elegans often feed on bacteria that develop on decaying vegetable matter. In space they will be fed bacteria that have been heat inactivated.

Dr Szewczyk’s C. elegans made news in 2003 when they survived the Space Shuttle Columbia disaster. Living in petri dishes and enclosed in aluminium canisters the worms survived re-entry and impact on the ground and were recovered weeks after the disaster.

Space flight research poses two big problems — access and money. Securing a place onboard the international space station is not only expensive it is also an exercise in diplomacy and international politics. It might not come up with as many direct answers as research carried out on Earth but Dr Szewczyk argues that space flight research is a unique opportunity to put life in difficult conditions and learn something fundamental about it. He also thinks that the work is a great way to get school children excited about science. He plans to work with Orion’s quest (www.orionsquest.org) to involve primary school children in this experiment.

Lindsay Brooke | alfa
Further information:
http://www.orionsquest.org
http://communications.nottingham.ac.uk/News/Article/Space-mission-for-worms.html
http://www.nottingham.ac.uk

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>