Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep twitches light up the brain

30.09.2014

UI study finds twitches during sleep activate the brain in a unique way

A University of Iowa study has found twitches made during sleep activate the brains of mammals differently than movements made while awake.


UI graduate students Alexandre Tiriac, left, and Carlos Del Rio-Bermudez say the findings of their new study provide further evidence that newborns learn about their bodies by twitching in their sleep.

Researchers say the findings show twitches during rapid eye movement (REM) sleep comprise a different class of movement and provide further evidence that sleep twitches activate circuits throughout the developing brain. In this way, twitches teach newborns about their limbs and what they can do with them.

“Every time we move while awake, there is a mechanism in our brain that allows us to understand that it is we who made the movement,” says Alexandre Tiriac, a fifth-year graduate student in psychology at the UI and first author of the study, which appeared this month in the journal Current Biology. “But twitches seem to be different in that the brain is unaware that they are self-generated. And this difference between sleep and wake movements may be critical for how twitches, which are most frequent in early infancy, contribute to brain development.”

Mark Blumberg, a psychology professor at the UI and senior author of the study, says this latest discovery is further evidence that sleep twitches— whether in dogs, cats or humans—are connected to brain development, not dreams.

“Because twitches are so different from wake movements,” he says, “these data put another nail in the coffin of the ‘chasing rabbits’ interpretation of twitches.”

For this study, Blumberg, Tiriac and fellow graduate student Carlos Del Rio-Bermudez studied the brain activity of unanesthetized rats between 8 and 10 days of age. They measured the brain activity while the animals were awake and moving and again while the rats were in REM sleep and twitching.

What they discovered was puzzling, at first.

“We noticed there was a lot of brain activity during sleep movements but not when these animals were awake and moving,” Tiriac says.

The researchers theorized that sensations coming back from twitching limbs during REM sleep were being processed differently in the brain than awake movements because they lacked what is known as “corollary discharge.”

First introduced by researchers in 1950, corollary discharge is a split-second message sent to the brain that allows animals—including rats, crickets, humans and more—to recognize and filter out sensations generated from their own actions. This filtering of sensations is what allows animals to distinguish between sensations arising from their own movements and those from stimuli in the outside world.

So, when the UI researchers noticed an increase in brain activity while the newborn rats were twitching during REM sleep but not when the animals were awake and moving, they conducted several follow-up experiments to determine whether sleep twitching is a unique self-generated movement that is processed as if it lacks corollary discharge.

The experiments were consistent in supporting the idea that sensations arising from twitches are not filtered: And without the filtering provided by corollary discharge, the sensations generated by twitching limbs are free to activate the brain and teach the newborn brain about the structure and function of the limbs.

“If twitches were like wake movements, the signals arising from twitching limbs would be filtered out,” Blumberg says. “That they are not filtered out suggests again that twitches are special—perhaps special because they are needed to activate developing brain circuits.”

The UI researchers were initially surprised to find the filtering system functioning so early in development.

“But what surprised us even more,” Blumberg says, “was that corollary discharge appears to be suspended during sleep in association with twitching, a possibility that – to our knowledge – has never before been entertained.”

Contacts

Sara Agnew, Office of Strategic Communication, 319- 384-0073
Mark Blumberg, Department of Psychology, 319-335-2424

Sara Agnew | Eurek Alert!
Further information:
http://now.uiowa.edu/2014/09/sleep-twitches-light-brain

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>