Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Selenium impacts honey bee behavior and survival

26.04.2012
UC Riverside entomologists develop 'proof of concept' that selenium may negatively impact honey bee populations at selenium-polluted sites

Entomologists at the University of California, Riverside have a "proof of concept" that selenium, a nonmetal chemical element, can disrupt the foraging behavior and survival of honey bees.

Selenium in very low concentrations is necessary for the normal development of insects — and humans — but becomes toxic at only slightly higher concentrations when it replaces sulfur in amino acids. In soils, particularly in Pacific Rim countries and near coal-fired power plants worldwide, it occurs most often in soluble forms, such as selenate.

Wondering what effect selenium concentrations in plants has on honey bees, John T. Trumble, a professor of entomology, and Kristen R. Hladun, his graduate student, performed controlled greenhouse experiments in which they documented the selenium amounts that three plant species — two kinds of mustards and one weedy radish plant — incorporate into their nectar and pollen after the plants had been irrigated with low to moderate levels of the trace mineral.

They then allowed honey bees to visit the plants. They found that the bees fed on food sources, such as flowers that contained selenium at even very high concentrations.

"Nature has not equipped bees to avoid selenium," Trumble said. "Unless the rates of concentrations of selenium were extremely high in our experiments, the bees did not appear to respond to its presence."

Two of the rates of irrigation water Trumble and Hladun tested had selenium concentrations — 0.5 and 0.7 parts per million — that were well below concentrations considered by the US government to be of concern.

"We found, however, that in weedy radish plants even these low rates produced selenium amounts of 60 parts per million in the nectar and 400 to 800 parts per million in the pollen," Hladun said. "But despite these high amounts, the bees would not avoid the selenium."

The researchers also found that bees that had been fed selenate in the lab were less responsive to sugar (as sucrose).

"The selenium interfered with their sucrose response," Hladun explained. "Such bees would be less likely to recruit bees to forage because they wouldn't be stimulated to communicate information about sucrose availability to the sister bees."

Trumble and Hladun also measured the mortality of forager bees that were fed selenium chronically (moderate selenium amounts over a few days). They found that these bees died at a significantly younger age.

Study results appear this month in PLoS ONE.

The researchers note that their work, performed in the laboratory, needs to be done next in the field because the bees' reduced response to sugar could diminish floral resources needed to support coworker bees and larvae in the field.

In preliminary studies they conducted in the field, the researchers found that some foragers leaving radish plants were carrying pollen with high concentrations of selenium. Further, they noted that plants with high concentrations of selenium were being visited by foragers just as frequently as were plants with no selenium, suggesting that the bees do not avoid feeding on selenium.

"The consequences of their inability to avoid selenium could be substantial," Trumble said. "We must emphasize that our data do not show that large losses of honey bees are currently occurring or that there is any relationship with Colony Collapse Disorder (CCD). Field studies need to be conducted to determine if honey bees collect enough selenium from contaminated plants to cause significant effects on learning, behavior and adult or larval survival."

The researchers already have received a three-year 480,000 grant from USDA-NIFA to take their research from the lab to the field. The grant, which will support Hladun's postdoctoral work at UCR, will allow the researchers also to investigate other elements, such as cadmium and lead, which have been found in urban honeybee hives.

"In our lab experiments, we focused on individual bees," said Hladun, who will graduate with a Ph.D. this summer. "But bees are social insects. In our future work, we plan also to focus on whole colony health."

Selenium occurs naturally in certain soils from shale deposits of prehistoric inland seas. Agricultural drainage dissolves selenium from these soils and causes the buildup of selenate. One of the worst cases of selenium pollution is the San Joaquin Valley in California, a major drainage site for many of the state's agricultural regions and an area that has reported honey bee loss due to CCD.

Trumble and Hladun were joined in the study by Ray R. Morton at UCR; and Brian H. Smith and Julie A. Mustard at Arizona State University, Tempe.

A US Environmental Protection Agency Science to Achieve Results (EPA-STAR) fellowship to Hladun supported the study.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>