Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal structure of bacterial chainmail

11.06.2012
An international team of scientists, funded in the UK by the Biotechnology and Biological Sciences Research Council (BBSRC), has uncovered the structure of the protective protein coat which surrounds many bacteria like a miniature suit of armour.

Their research, which is published today (Sunday 10 June) in Nature, has far ranging consequences in helping us understand how some pathogenic bacteria infect humans and animals, and could help us develop new vaccines.

Until now, scientists have known very little about the structure and function of this coat, which scientists call S-layer, despite the fact that some bacteria invest as much as a third of their total protein production in building it.

The team of scientists from the UK, France and Belgium, were able to image the S-layer of a harmless soil bacterium called Geobacillus stearothermophilus down to the scale of a single atom. They revealed that the individual proteins of the protective layer hook together much like the chainmail of a medieval knight.

Dr Stefan Howorka, of UCL (University College London), led the work in the UK. He explains "These protein coats have remained quite mysterious to scientists even though they are found on a huge variety of bacteria. Using advanced imaging techniques, we have uncovered for the first time the structure of an S-layer in remarkable detail showing that the protein subunits are linked together in a manner resembling a chainmail. This remarkably optimized layer not only provides a tough but flexible coat of armour to protect the bacterium, but is also permeable allowing nutrients and other substances to diffuse in or out."

This chainmail coat supports the shape of bacteria and protects them from environmental hazards. The coat is also thought to be important in allowing many pathogenic bacteria to infect cells, helping germs to stick to and slide into human or animal cells where they can wreak havoc. Other pathogens coat themselves with a protein lattice that makes them invisible to the "radar" of the immune system.

Dr Howorka continues "Now that we have worked out how to obtain the structure of the S-layer in one bacterium, we expect that the structure of the protein coats of other species will soon be revealed. Uncovering the bacterial armour of pathogens like the superbug Clostridium difficile or of Bacillus anthraci, the bacterium responsible for anthrax, is now a high priority for many scientists. This understanding provides a real opportunity to find chinks in the bacterial armour that would allow precise targeting of antibiotics or vaccines against these challenging pathogens."

The remarkable structure of the S-layer coat also holds promise as a carrier for vaccines. By exploiting the ability of these coats to self-assemble from their individual building blocks it should be possible to construct hybrid vaccines that fuse harmless S-layers with bits of proteins from pathogenic bacteria.

Professor Douglas Kell, BBSRC Chief Executive said "This work is a great example of how important it is to study the secrets of how nature fits together at the most minute scale. By revealing how things look we can gain an insight into how they work. Understanding how nature works is going to be crucial in combating many of the great challenges facing society."

Mike Davies | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

Further reports about: BBSRC building block pathogenic bacteria scientists

More articles from Life Sciences:

nachricht A new view of microscopic interactions
01.07.2020 | University of Missouri-Columbia

nachricht Microscope allows gentle, continuous imaging of light-sensitive corals
01.07.2020 | Marine Biological Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

Im Focus: NASA observes large Saharan dust plume over Atlantic ocean

NASA-NOAA's Suomi NPP satellite observed a huge Saharan dust plume streaming over the North Atlantic Ocean, beginning on June 13. Satellite data showed the dust had spread over 2,000 miles.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, Colin Seftor, an atmospheric scientist, created an animation of the dust and aerosols from the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

First exposed planetary core discovered

01.07.2020 | Physics and Astronomy

Energy-saving servers: Data storage 2.0

01.07.2020 | Power and Electrical Engineering

Laser takes pictures of electrons in crystals

01.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>