Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how rogue communications between cells lead to Leukaemia

10.02.2020

How do biochemical messengers mediate the development of new blood cells and how do these processes get out of control in leukaemias? An international research team involving partners from Germany, United Kingdom, Finland and the USA has achieved a fundamental breakthrough in understanding the mechanism of these processes. The results of this research project were published on February 7th 2020 in the new issue of the renowned journal "Science" (https://science.sciencemag.org/cgi/doi/10.1126/science.aaw3242).

In adults, billions of mature blood cells are formed from haematopoietic stem cells in the bone marrow every day. This process is tightly regulated by a family of messenger proteins called cytokines that control the development and proliferation of the different blood cell types.


Scientists discover how rogue communications between cells lead to Leukaemia.

Ilpo Vattulainen and Joni Vuorio/University of Helsinki

Cytokines interact with specific receptors on the surface of cells, which allow the transmission of signals controlling whether the cell divides, or differentiates into a specific blood cell type. Various leukaemias are associated with genetic mutations that activate these signalling pathways in the absence of cytokines in an uncontrolled manner.

Until now, the molecular mechanisms of how individual mutations trigger signal activation and lead to these blood cancers have remained unclear.

First author Dr. Stephan Wilmes, who started the project as a Postdoc at Osnabrück University: “It was truly inspiring to tackle this highly relevant biomedical question by applying cutting-edge biophysical techniques.” “A particular challenge was to coordinate the different research approaches of the participating working groups," says Maximillian Hafer, who has since assumed responsibility for the project.

Using single-molecule microscopy in living cells, the researchers have now been able to clearly show for the first time that the receptors are crosslinked by cytokines to form pairs. Until now, it has been assumed that the receptors are already present as inactive pairs even without cytokines.

From their new observations using super-resolution fluorescence microscopes, the researchers concluded that pair formation itself is the basic switch for the activation of signal transduction in the cell.

“By directly visualising individual receptors at physiological conditions under the microscope, we were able to resolve a controversy that has preoccupied the field for more than 20 years," explains Professor Jacob Piehler from Osnabrück University.

In combination with biomedical studies at the Universities of York and Dundee, the researchers found that several important disease-relevant mutations led to the pairing of certain receptors without cytokine. "These observations led us to a previously unknown mechanism how individual mutations at this receptor trigger cytokine-independent signalling and thus can promote leukaemia," reveals Professor Ian Hitchcock from the University of York.

Cooperation partners at the University of Helsinki used these insights to develop a comprehensive structural model via atomic-scale simulations and molecular modelling, which could explain the different modes of action of different mutations.

"Our biomolecular simulations unveiled surprising features concerning the orientation of active receptor pairs at the plasma membrane, explaining how mutations render activation possible without a ligand. These predictions were subsequently confirmed experimentally", explains Professor Ilpo Vattulainen from the University of Helsinki.

These fundamental insights into the mechanism of signal activation enable completely new and much more targeted strategies for combating leukaemias. Further, the researchers suspect that a wide range of inflammatory and allergic diseases can also be traced back to similar mechanisms.

Prof. Dr. Jacob Piehler, Osnabrück University
School of Biology/ Chemistry and Center of Cellular Nanoanalytics (CellNanOs)
Barbarastraße 11, 49076 Osnabrück
Phone: +49 541 969-2800
E-Mail: piehler@uos.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jacob Piehler, Osnabrück University
School of Biology/ Chemistry and Center of Cellular Nanoanalytics (CellNanOs)
Barbarastraße 11, 49076 Osnabrück
Phone: +49 541 969-2800
E-Mail: piehler@uni-osnabrueck.de

Originalpublikation:

"Science" (https://science.sciencemag.org/cgi/doi/10.1126/science.aaw3242)

Dr. Utz Lederbogen | idw - Informationsdienst Wissenschaft
Further information:
https://www.uni-osnabrueck.de

More articles from Life Sciences:

nachricht Shedding light on the brown color of algae
14.07.2020 | Johannes Gutenberg-Universität Mainz

nachricht New substance library to accelerate the search for active compounds
14.07.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Shedding light on the brown color of algae

14.07.2020 | Life Sciences

Color barcode becomes ISO standard

14.07.2020 | Information Technology

New substance library to accelerate the search for active compounds

14.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>